16,654 research outputs found

    Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

    Full text link
    Trial-and-error based reinforcement learning (RL) has seen rapid advancements in recent times, especially with the advent of deep neural networks. However, the majority of autonomous RL algorithms require a large number of interactions with the environment. A large number of interactions may be impractical in many real-world applications, such as robotics, and many practical systems have to obey limitations in the form of state space or control constraints. To reduce the number of system interactions while simultaneously handling constraints, we propose a model-based RL framework based on probabilistic Model Predictive Control (MPC). In particular, we propose to learn a probabilistic transition model using Gaussian Processes (GPs) to incorporate model uncertainty into long-term predictions, thereby, reducing the impact of model errors. We then use MPC to find a control sequence that minimises the expected long-term cost. We provide theoretical guarantees for first-order optimality in the GP-based transition models with deterministic approximate inference for long-term planning. We demonstrate that our approach does not only achieve state-of-the-art data efficiency, but also is a principled way for RL in constrained environments.Comment: Accepted at AISTATS 2018

    Safe Trajectory Sampling in Model-Based Reinforcement Learning

    Get PDF
    Model-based reinforcement learning aims to learn a policy to solve a target task by leveraging a learned dynamics model. This approach, paired with principled handling of uncertainty allows for data-efficient policy learning in robotics. However, the physical environment has feasibility and safety constraints that need to be incorporated into the policy before it is safe to execute on a real robot. In this work, we study how to enforce the aforementioned constraints in the context of model-based reinforcement learning with probabilistic dynamics models. In particular, we investigate how trajectories sampled from the learned dynamics model can be used on a real robot, while fulfilling user-specified safety requirements. We present a model-based reinforcement learning approach using Gaussian processes where safety constraints are taken into account without simplifying Gaussian assumptions on the predictive state distributions. We evaluate the proposed approach on different continuous control tasks with varying complexity and demonstrate how our safe trajectory-sampling approach can be directly used on a real robot without violating safety constraints

    PILCO: A Model-Based and Data-Efficient Approach to Policy Search

    No full text
    In this paper, we introduce PILCO, a practical, data-efficient model-based policy search method. PILCO reduces model bias, one of the key problems of model-based reinforcement learning, in a principled way. By learning a probabilistic dynamics model and explicitly incorporating model uncertainty into long-term planning, PILCO can cope with very little data and facilitates learning from scratch in only a few trials. Policy evaluation is performed in closed form using state-of-the-art approximate inference. Furthermore, policy gradients are computed analytically for policy improvement. We report unprecedented learning efficiency on challenging and high-dimensional control tasks. Copyright 2011 by the author(s)/owner(s)

    Meta Reinforcement Learning with Latent Variable Gaussian Processes

    Get PDF
    Learning from small data sets is critical in many practical applications where data collection is time consuming or expensive, e.g., robotics, animal experiments or drug design. Meta learning is one way to increase the data efficiency of learning algorithms by generalizing learned concepts from a set of training tasks to unseen, but related, tasks. Often, this relationship between tasks is hard coded or relies in some other way on human expertise. In this paper, we frame meta learning as a hierarchical latent variable model and infer the relationship between tasks automatically from data. We apply our framework in a model-based reinforcement learning setting and show that our meta-learning model effectively generalizes to novel tasks by identifying how new tasks relate to prior ones from minimal data. This results in up to a 60% reduction in the average interaction time needed to solve tasks compared to strong baselines.Comment: 11 pages, 7 figure
    • …
    corecore