22,766 research outputs found
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks
We introduce a data-driven forecasting method for high-dimensional chaotic
systems using long short-term memory (LSTM) recurrent neural networks. The
proposed LSTM neural networks perform inference of high-dimensional dynamical
systems in their reduced order space and are shown to be an effective set of
nonlinear approximators of their attractor. We demonstrate the forecasting
performance of the LSTM and compare it with Gaussian processes (GPs) in time
series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation
and a prototype climate model. The LSTM networks outperform the GPs in
short-term forecasting accuracy in all applications considered. A hybrid
architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is
proposed to ensure convergence to the invariant measure. This novel hybrid
method is fully data-driven and extends the forecasting capabilities of LSTM
networks.Comment: 31 page
Proceedings of Abstracts Engineering and Computer Science Research Conference 2019
© 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care
Maturation trajectories of cortical resting-state networks depend on the mediating frequency band
The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13–30 Hz) and gamma (31–80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development.This work was supported by grants from the Nancy Lurie Marks Family Foundation (TK, SK, MGK), Autism Speaks (TK), The Simons Foundation (SFARI 239395, TK), The National Institute of Child Health and Development (R01HD073254, TK), National Institute for Biomedical Imaging and Bioengineering (P41EB015896, 5R01EB009048, MSH), and the Cognitive Rhythms Collaborative: A Discovery Network (NFS 1042134, MSH). (Nancy Lurie Marks Family Foundation; Autism Speaks; SFARI 239395 - Simons Foundation; R01HD073254 - National Institute of Child Health and Development; P41EB015896 - National Institute for Biomedical Imaging and Bioengineering; 5R01EB009048 - National Institute for Biomedical Imaging and Bioengineering; NFS 1042134 - Cognitive Rhythms Collaborative: A Discovery Network
Energy Disaggregation Using Elastic Matching Algorithms
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio
Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks
Future wireless networks have a substantial potential in terms of supporting
a broad range of complex compelling applications both in military and civilian
fields, where the users are able to enjoy high-rate, low-latency, low-cost and
reliable information services. Achieving this ambitious goal requires new radio
techniques for adaptive learning and intelligent decision making because of the
complex heterogeneous nature of the network structures and wireless services.
Machine learning (ML) algorithms have great success in supporting big data
analytics, efficient parameter estimation and interactive decision making.
Hence, in this article, we review the thirty-year history of ML by elaborating
on supervised learning, unsupervised learning, reinforcement learning and deep
learning. Furthermore, we investigate their employment in the compelling
applications of wireless networks, including heterogeneous networks (HetNets),
cognitive radios (CR), Internet of things (IoT), machine to machine networks
(M2M), and so on. This article aims for assisting the readers in clarifying the
motivation and methodology of the various ML algorithms, so as to invoke them
for hitherto unexplored services as well as scenarios of future wireless
networks.Comment: 46 pages, 22 fig
- …
