714 research outputs found

    A Cloud-based Mobile Privacy Protection System with Efficient Cache Mechanism

    Get PDF
    People increasingly rely on their mobile devices and use them to store a lot of data. Some of the data are personal and private, whose leakage leads to users\u27 privacy harm. Meanwhile, mobile apps and services over-collect users\u27 data due to the coarse-grained access control approach utilized by the mobile operating system. We propose a cloud-based approach to provide fine-grained access control toward data requests. We add privacy level, as a new metadata, to data and manage the storage using different policies correspondingly. However, the proposed approach leads to performance decreases because of the extra communication cost. We also introduce a novel cache mechanism to eliminate the extra cost by storing non-private and popular data on the mobile device. As part of our cache mechanism, we design a user-preference-based ordering method along with the principle of locality to determine how popular some data are. We also design a configurable refresh policy to improve the overall performance. Finally, we evaluate our approach using a real phone in a simulated environment. The results show that our approach can keep the response time of all data requests within a reasonable range and the cache mechanism can further improve the performance

    Unleashing the Power of Edge-Cloud Generative AI in Mobile Networks: A Survey of AIGC Services

    Full text link
    Artificial Intelligence-Generated Content (AIGC) is an automated method for generating, manipulating, and modifying valuable and diverse data using AI algorithms creatively. This survey paper focuses on the deployment of AIGC applications, e.g., ChatGPT and Dall-E, at mobile edge networks, namely mobile AIGC networks, that provide personalized and customized AIGC services in real time while maintaining user privacy. We begin by introducing the background and fundamentals of generative models and the lifecycle of AIGC services at mobile AIGC networks, which includes data collection, training, finetuning, inference, and product management. We then discuss the collaborative cloud-edge-mobile infrastructure and technologies required to support AIGC services and enable users to access AIGC at mobile edge networks. Furthermore, we explore AIGCdriven creative applications and use cases for mobile AIGC networks. Additionally, we discuss the implementation, security, and privacy challenges of deploying mobile AIGC networks. Finally, we highlight some future research directions and open issues for the full realization of mobile AIGC networks

    cRVR: A Stackelberg Game Approach for Joint Privacy-Aware Video Requesting and Edge Caching

    Full text link
    As users conveniently stream their favored online videos, video request records will be automatically seized by video content providers, which may leak users' privacy. Unfortunately, most existing privacy-enhancing approaches are not applicable for protecting users' privacy in requests, which cannot be easily altered or distorted by users and must be visible for content providers to stream correct videos. To preserve request privacy in online video services, it is possible to request additional videos irrelevant to users' interests so that content providers cannot precisely infer users' interest information. However, a naive redundant requesting approach will significantly degrade the performance of edge caches and increase bandwidth overhead accordingly. In this paper, we are among the first to propose a Cache-Friendly Redundant Video Requesting (cRVR) algorithm for User Devices (UDs) and its corresponding caching algorithm for the Edge Cache (EC), which can effectively mitigate the problem of request privacy leakage with minimal impact on the EC's performance. To solve the problem, we develop a Stackelberg game to analyze the dedicated interaction between UDs and EC and obtain their optimal strategies to maximize their respective utility. For UDs, the utility function is a combination of both video playback utility and privacy protection utility. We theoretically prove the existence and uniqueness of the equilibrium of the Stackelberg game. In the end, extensive experiments are conducted with real traces to demonstrate that cRVR can effectively protect video request privacy by reducing up to 57.96\% of privacy disclosure compared to baseline algorithms. Meanwhile, the caching performance of ECs is only slightly affected
    corecore