16 research outputs found

    Exact Topology and Parameter Estimation in Distribution Grids with Minimal Observability

    Full text link
    Limited presence of nodal and line meters in distribution grids hinders their optimal operation and participation in real-time markets. In particular lack of real-time information on the grid topology and infrequently calibrated line parameters (impedances) adversely affect the accuracy of any operational power flow control. This paper suggests a novel algorithm for learning the topology of distribution grid and estimating impedances of the operational lines with minimal observational requirements - it provably reconstructs topology and impedances using voltage and injection measured only at the terminal (end-user) nodes of the distribution grid. All other (intermediate) nodes in the network may be unobserved/hidden. Furthermore no additional input (e.g., number of grid nodes, historical information on injections at hidden nodes) is needed for the learning to succeed. Performance of the algorithm is illustrated in numerical experiments on the IEEE and custom power distribution models

    Validation of algorithms to estimate distribution network characteristics using power-hardware-in-the-loop configuration

    Get PDF
    Distribution system operators (DSOs) require accurate knowledge of the status of the network in order to ensure the continuity and quality of power supply. In this context, the National Physical Laboratory (NPL) and the Power Network Demonstrations Centre (PNDC) have been working together in the development and validation of optimal sensor placement and network topology estimation algorithms. This paper presents the description of two of these algorithms as well as the topology configuration of the PNDC distribution network considered to gather measurements for the validation of the algorithms. A Power-Hardware-in-the-Loop (P-HiL) configuration has been used as the testbed, where a number of physical measurement devices are installed in the physical network and an extended number of devices are virtually installed in the simulate network. The applications of the proposed algorithms to the measurements along with results from the P-HiL tests are presented in the paper

    Event detection and localization in distribution grids with phasor measurement units

    Get PDF
    The recent introduction of synchrophasor technology into power distribution systems has given impetus to various monitoring, diagnostic, and control applications, such as system identification and event detection, which are crucial for restoring service, preventing outages, and managing equipment health. Drawing on the existing framework for inferring topology and admittances of a power network from voltage and current phasor measurements, this paper proposes an online algorithm for event detection and localization in unbalanced three-phase distribution systems. Using a convex relaxation and a matrix partitioning technique, the proposed algorithm is capable of identifying topology changes and attributing them to specific categories of events. The performance of this algorithm is evaluated on a standard test distribution feeder with synthesized loads, and it is shown that a tripped line can be detected and localized in an accurate and timely fashion, highlighting its potential for real-world applications
    corecore