8 research outputs found

    Data-Augmented Contact Model for Rigid Body Simulation

    Full text link
    Accurately modeling contact behaviors for real-world, near-rigid materials remains a grand challenge for existing rigid-body physics simulators. This paper introduces a data-augmented contact model that incorporates analytical solutions with observed data to predict the 3D contact impulse which could result in rigid bodies bouncing, sliding or spinning in all directions. Our method enhances the expressiveness of the standard Coulomb contact model by learning the contact behaviors from the observed data, while preserving the fundamental contact constraints whenever possible. For example, a classifier is trained to approximate the transitions between static and dynamic frictions, while non-penetration constraint during collision is enforced analytically. Our method computes the aggregated effect of contact for the entire rigid body, instead of predicting the contact force for each contact point individually, removing the exponential decline in accuracy as the number of contact points increases.Comment: 7 pages, 7 figures. Submitted to ICRA 2019. Added video attachment with full 3D experiments: https://youtu.be/AKSD8TabDV

    TossingBot: Learning to Throw Arbitrary Objects with Residual Physics

    Full text link
    We investigate whether a robot arm can learn to pick and throw arbitrary objects into selected boxes quickly and accurately. Throwing has the potential to increase the physical reachability and picking speed of a robot arm. However, precisely throwing arbitrary objects in unstructured settings presents many challenges: from acquiring reliable pre-throw conditions (e.g. initial pose of object in manipulator) to handling varying object-centric properties (e.g. mass distribution, friction, shape) and dynamics (e.g. aerodynamics). In this work, we propose an end-to-end formulation that jointly learns to infer control parameters for grasping and throwing motion primitives from visual observations (images of arbitrary objects in a bin) through trial and error. Within this formulation, we investigate the synergies between grasping and throwing (i.e., learning grasps that enable more accurate throws) and between simulation and deep learning (i.e., using deep networks to predict residuals on top of control parameters predicted by a physics simulator). The resulting system, TossingBot, is able to grasp and throw arbitrary objects into boxes located outside its maximum reach range at 500+ mean picks per hour (600+ grasps per hour with 85% throwing accuracy); and generalizes to new objects and target locations. Videos are available at https://tossingbot.cs.princeton.eduComment: Summary Video: https://youtu.be/f5Zn2Up2RjQ Project webpage: https://tossingbot.cs.princeton.ed
    corecore