5,356,134 research outputs found
Data reduction and evaluation procedures
The computational procedures that are involved in exhaust emissions data reduction and the use of these computational procedures for determining the quality of the data that is obtained from exhaust measurements were considered. Four problem areas were calculated: (1) the various methods for performing the carbon balance, (2) the method for calculating water correction factors, (3) the method for calculating the exhaust molecular weight, and (4) assessing the quality of the data
Randomized Dimension Reduction on Massive Data
Scalability of statistical estimators is of increasing importance in modern
applications and dimension reduction is often used to extract relevant
information from data. A variety of popular dimension reduction approaches can
be framed as symmetric generalized eigendecomposition problems. In this paper
we outline how taking into account the low rank structure assumption implicit
in these dimension reduction approaches provides both computational and
statistical advantages. We adapt recent randomized low-rank approximation
algorithms to provide efficient solutions to three dimension reduction methods:
Principal Component Analysis (PCA), Sliced Inverse Regression (SIR), and
Localized Sliced Inverse Regression (LSIR). A key observation in this paper is
that randomization serves a dual role, improving both computational and
statistical performance. This point is highlighted in our experiments on real
and simulated data.Comment: 31 pages, 6 figures, Key Words:dimension reduction, generalized
eigendecompositon, low-rank, supervised, inverse regression, random
projections, randomized algorithms, Krylov subspace method
Data Reduction for Graph Coloring Problems
This paper studies the kernelization complexity of graph coloring problems
with respect to certain structural parameterizations of the input instances. We
are interested in how well polynomial-time data reduction can provably shrink
instances of coloring problems, in terms of the chosen parameter. It is well
known that deciding 3-colorability is already NP-complete, hence parameterizing
by the requested number of colors is not fruitful. Instead, we pick up on a
research thread initiated by Cai (DAM, 2003) who studied coloring problems
parameterized by the modification distance of the input graph to a graph class
on which coloring is polynomial-time solvable; for example parameterizing by
the number k of vertex-deletions needed to make the graph chordal. We obtain
various upper and lower bounds for kernels of such parameterizations of
q-Coloring, complementing Cai's study of the time complexity with respect to
these parameters.
Our results show that the existence of polynomial kernels for q-Coloring
parameterized by the vertex-deletion distance to a graph class F is strongly
related to the existence of a function f(q) which bounds the number of vertices
which are needed to preserve the NO-answer to an instance of q-List-Coloring on
F.Comment: Author-accepted manuscript of the article that will appear in the FCT
2011 special issue of Information & Computatio
FIREBALL: Detector, data acquisition and reduction
The Faint Intergalactic Redshifted Emission Balloon (FIREBALL) had its first scientific flight in June 2009. The instrument combines microchannel plate detector technology with fiber-fed integral field spectroscopy on an unstable stratospheric balloon gondola platform. This unique combination poses a series of calibration and data reduction challenges that must be addressed and resolved to allow for accurate data analysis. We discuss our approach and some of the methods we are employing to accomplish this task
Dimensionality reduction with image data
A common objective in image analysis is dimensionality reduction. The most common often used data-exploratory technique with this objective is principal component analysis. We propose a new method based on the projection of the images as matrices after a Procrustes rotation and show that it leads to a better reconstruction of images
AKSZ construction from reduction data
We discuss a general procedure to encode the reduction of the target space
geometry into AKSZ sigma models. This is done by considering the AKSZ
construction with target the BFV model for constrained graded symplectic
manifolds. We investigate the relation between this sigma model and the one
with the reduced structure. We also discuss several examples in dimension two
and three when the symmetries come from Lie group actions and systematically
recover models already proposed in the literature.Comment: 42 page
- …
