157 research outputs found

    Priori information and sliding window based prediction algorithm for energy-efficient storage systems in cloud

    Get PDF
    One of the major challenges in cloud computing and data centers is the energy conservation and emission reduction. Accurate prediction algorithms are essential for building energy efficient storage systems in cloud computing. In this paper, we first propose a Three-State Disk Model (3SDM), which can describe the service quality and energy consumption states of a storage system accurately. Based on this model, we develop a method for achieving energy conservation without losing quality by skewing the workload among the disks to transmit the disk states of a storage system. The efficiency of this method is highly dependent on the accuracy of the information predicting the blocks to be accessed and the blocks not be accessed in the near future. We develop a priori information and sliding window based prediction (PISWP) algorithm by taking advantage of the priori information about human behavior and selecting suitable size of sliding window. The PISWP method targets at streaming media applications, but we also check its efficiency on other two applications, news in webpage and new tool released. Disksim, an established storage system simulator, is applied in our experiments to verify the effect of our method for various users’ traces. The results show that this prediction method can bring a high degree energy saving for storage systems in cloud computing environment

    Workload characterization and synthesis for data center optimization

    Get PDF

    Cloud computing: survey on energy efficiency

    Get PDF
    International audienceCloud computing is today’s most emphasized Information and Communications Technology (ICT) paradigm that is directly or indirectly used by almost every online user. However, such great significance comes with the support of a great infrastructure that includes large data centers comprising thousands of server units and other supporting equipment. Their share in power consumption generates between 1.1% and 1.5% of the total electricity use worldwide and is projected to rise even more. Such alarming numbers demand rethinking the energy efficiency of such infrastructures. However, before making any changes to infrastructure, an analysis of the current status is required. In this article, we perform a comprehensive analysis of an infrastructure supporting the cloud computing paradigm with regards to energy efficiency. First, we define a systematic approach for analyzing the energy efficiency of most important data center domains, including server and network equipment, as well as cloud management systems and appliances consisting of a software utilized by end users. Second, we utilize this approach for analyzing available scientific and industrial literature on state-of-the-art practices in data centers and their equipment. Finally, we extract existing challenges and highlight future research directions

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Doctor of Philosophy in Computing

    Get PDF
    dissertatio

    Scalable, Data- intensive Network Computation

    Get PDF
    To enable groups of collaborating researchers at different locations to effectively share large datasets and investigate their spontaneous hypotheses on the fly, we are interested in de- veloping a distributed system that can be easily leveraged by a variety of data intensive applications. The system is composed of (i) a number of best effort logistical depots to en- able large-scale data sharing and in-network data processing, (ii) a set of end-to-end tools to effectively aggregate, manage and schedule a large number of network computations with attendant data movements, and (iii) a Distributed Hash Table (DHT) on top of the generic depot services for scalable data management. The logistical depot is extended by following the end-to-end principles and is modeled with a closed queuing network model. Its performance characteristics are studied by solving the steady state distributions of the model using local balance equations. The modeling results confirm that the wide area network is the performance bottleneck and running concurrent jobs can increase resource utilization and system throughput. As a novel contribution, techniques to effectively support resource demanding data- intensive applications using the ÂŻne-grained depot services are developed. These techniques include instruction level scheduling of operations, dynamic co-scheduling of computation and replication, and adaptive workload control. Experiments in volume visualization have proved the effectiveness of these techniques. Due to the unique characteristic of data- intensive applications and our co-scheduling algorithm, a DHT is implemented on top of the basic storage and computation services. It demonstrates the potential of the Logistical Networking infrastructure to serve as a service creation platform

    A shared-disk parallel cluster file system

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Informática Pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaToday, clusters are the de facto cost effective platform both for high performance computing (HPC) as well as IT environments. HPC and IT are quite different environments and differences include, among others, their choices on file systems and storage: HPC favours parallel file systems geared towards maximum I/O bandwidth, but which are not fully POSIX-compliant and were devised to run on top of (fault prone) partitioned storage; conversely, IT data centres favour both external disk arrays (to provide highly available storage) and POSIX compliant file systems, (either general purpose or shared-disk cluster file systems, CFSs). These specialised file systems do perform very well in their target environments provided that applications do not require some lateral features, e.g., no file locking on parallel file systems, and no high performance writes over cluster-wide shared files on CFSs. In brief, we can say that none of the above approaches solves the problem of providing high levels of reliability and performance to both worlds. Our pCFS proposal makes a contribution to change this situation: the rationale is to take advantage on the best of both – the reliability of cluster file systems and the high performance of parallel file systems. We don’t claim to provide the absolute best of each, but we aim at full POSIX compliance, a rich feature set, and levels of reliability and performance good enough for broad usage – e.g., traditional as well as HPC applications, support of clustered DBMS engines that may run over regular files, and video streaming. pCFS’ main ideas include: · Cooperative caching, a technique that has been used in file systems for distributed disks but, as far as we know, was never used either in SAN based cluster file systems or in parallel file systems. As a result, pCFS may use all infrastructures (LAN and SAN) to move data. · Fine-grain locking, whereby processes running across distinct nodes may define nonoverlapping byte-range regions in a file (instead of the whole file) and access them in parallel, reading and writing over those regions at the infrastructure’s full speed (provided that no major metadata changes are required). A prototype was built on top of GFS (a Red Hat shared disk CFS): GFS’ kernel code was slightly modified, and two kernel modules and a user-level daemon were added. In the prototype, fine grain locking is fully implemented and a cluster-wide coherent cache is maintained through data (page fragments) movement over the LAN. Our benchmarks for non-overlapping writers over a single file shared among processes running on different nodes show that pCFS’ bandwidth is 2 times greater than NFS’ while being comparable to that of the Parallel Virtual File System (PVFS), both requiring about 10 times more CPU. And pCFS’ bandwidth also surpasses GFS’ (600 times for small record sizes, e.g., 4 KB, decreasing down to 2 times for large record sizes, e.g., 4 MB), at about the same CPU usage.Lusitania, Companhia de Seguros S.A, Programa IBM Shared University Research (SUR

    In-Datacenter Performance Analysis of a Tensor Processing Unit

    Full text link
    Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU)---deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs (caches, out-of-order execution, multithreading, multiprocessing, prefetching, ...) that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters' NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X - 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X - 80X higher. Moreover, using the GPU's GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.Comment: 17 pages, 11 figures, 8 tables. To appear at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 24-28, 201
    • …
    corecore