33 research outputs found

    Improved methods and system for watermarking halftone images

    Get PDF
    Watermarking is becoming increasingly important for content control and authentication. Watermarking seamlessly embeds data in media that provide additional information about that media. Unfortunately, watermarking schemes that have been developed for continuous tone images cannot be directly applied to halftone images. Many of the existing watermarking methods require characteristics that are implicit in continuous tone images, but are absent from halftone images. With this in mind, it seems reasonable to develop watermarking techniques specific to halftones that are equipped to work in the binary image domain. In this thesis, existing techniques for halftone watermarking are reviewed and improvements are developed to increase performance and overcome their limitations. Post-halftone watermarking methods work on existing halftones. Data Hiding Cell Parity (DHCP) embeds data in the parity domain instead of individual pixels. Data Hiding Mask Toggling (DHMT) works by encoding two bits in the 2x2 neighborhood of a pseudorandom location. Dispersed Pseudorandom Generator (DPRG), on the other hand, is a preprocessing step that takes place before image halftoning. DPRG disperses the watermark embedding locations to achieve better visual results. Using the Modified Peak Signal-to-Noise Ratio (MPSNR) metric, the proposed techniques outperform existing methods by up to 5-20%, depending on the image type and method considered. Field programmable gate arrays (FPGAs) are ideal for solutions that require the flexibility of software, while retaining the performance of hardware. Using VHDL, an FPGA based halftone watermarking engine was designed and implemented for the Xilinx Virtex XCV300. This system was designed for watermarking pre-existing halftones and halftones obtained from grayscale images. This design utilizes 99% of the available FPGA resources and runs at 33 MHz. Such a design could be applied to a scanner or printer at the hardware level without adversely affecting performance

    Taming Reversible Halftoning via Predictive Luminance

    Full text link
    Traditional halftoning usually drops colors when dithering images with binary dots, which makes it difficult to recover the original color information. We proposed a novel halftoning technique that converts a color image into a binary halftone with full restorability to its original version. Our novel base halftoning technique consists of two convolutional neural networks (CNNs) to produce the reversible halftone patterns, and a noise incentive block (NIB) to mitigate the flatness degradation issue of CNNs. Furthermore, to tackle the conflicts between the blue-noise quality and restoration accuracy in our novel base method, we proposed a predictor-embedded approach to offload predictable information from the network, which in our case is the luminance information resembling from the halftone pattern. Such an approach allows the network to gain more flexibility to produce halftones with better blue-noise quality without compromising the restoration quality. Detailed studies on the multiple-stage training method and loss weightings have been conducted. We have compared our predictor-embedded method and our novel method regarding spectrum analysis on halftone, halftone accuracy, restoration accuracy, and the data embedding studies. Our entropy evaluation evidences our halftone contains less encoding information than our novel base method. The experiments show our predictor-embedded method gains more flexibility to improve the blue-noise quality of halftones and maintains a comparable restoration quality with a higher tolerance for disturbances.Comment: to be published in IEEE Transactions on Visualization and Computer Graphic

    Near-Lossless Bitonal Image Compression System

    Get PDF
    The main purpose of this thesis is to develop an efficient near-lossless bitonal compression algorithm and to implement that algorithm on a hardware platform. The current methods for compression of bitonal images include the JBIG and JBIG2 algorithms, however both JBIG and JBIG2 have their disadvantages. Both of these algorithms are covered by patents filed by IBM, making them costly to implement commercially. Also, JBIG only provides means for lossless compression while JBIG2 provides lossy methods only for document-type images. For these reasons a new method for introducing loss and controlling this loss to sustain quality is developed. The lossless bitonal image compression algorithm used for this thesis is called Block Arithmetic Coder for Image Compression (BACIC), which can efficiently compress bitonal images. In this thesis, loss is introduced for cases where better compression efficiency is needed. However, introducing loss in bitonal images is especially difficult, because pixels undergo such a drastic change, either from white to black or black to white. Such pixel flipping introduces salt and pepper noise, which can be very distracting when viewing an image. Two methods are used in combination to control the visual distortion introduced into the image. The first is to keep track of the error created by the flipping of pixels, and using this error to decide whether flipping another pixel will cause the visual distortion to exceed a predefined threshold. The second method is region of interest consideration. In this method, lower loss or no loss is introduced into the important parts of an image, and higher loss is introduced into the less important parts. This allows for a good quality image while increasing the compression efficiency. Also, the ability of BACIC to compress grayscale images is studied and BACICm, a multiplanar BACIC algorithm, is created. A hardware implementation of the BACIC lossless bitonal image compression algorithm is also designed. The hardware implementation is done using VHDL targeting a Xilinx FPGA, which is very useful, because of its flexibility. The programmed FPGA could be included in a product of the facsimile or printing industry to handle the compression or decompression internal to the unit, giving it an advantage in the marketplace

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique

    Layer Decomposition Learning Based on Gaussian Convolution Model and Residual Deblurring for Inverse Halftoning

    Full text link
    Layer decomposition to separate an input image into base and detail layers has been steadily used for image restoration. Existing residual networks based on an additive model require residual layers with a small output range for fast convergence and visual quality improvement. However, in inverse halftoning, homogenous dot patterns hinder a small output range from the residual layers. Therefore, a new layer decomposition network based on the Gaussian convolution model (GCM) and structure-aware deblurring strategy is presented to achieve residual learning for both the base and detail layers. For the base layer, a new GCM-based residual subnetwork is presented. The GCM utilizes a statistical distribution, in which the image difference between a blurred continuous-tone image and a blurred halftoned image with a Gaussian filter can result in a narrow output range. Subsequently, the GCM-based residual subnetwork uses a Gaussian-filtered halftoned image as input and outputs the image difference as residual, thereby generating the base layer, i.e., the Gaussian-blurred continuous-tone image. For the detail layer, a new structure-aware residual deblurring subnetwork (SARDS) is presented. To remove the Gaussian blurring of the base layer, the SARDS uses the predicted base layer as input and outputs the deblurred version. To more effectively restore image structures such as lines and texts, a new image structure map predictor is incorporated into the deblurring network to induce structure-adaptive learning. This paper provides a method to realize the residual learning of both the base and detail layers based on the GCM and SARDS. In addition, it is verified that the proposed method surpasses state-of-the-art methods based on U-Net, direct deblurring networks, and progressively residual networks

    A Self Recovery Approach using Halftone Images for Medical Imagery System

    Get PDF
    ABSTRACT Security has become an inseparable issue even in the field of medical applications. Communication in medicine and healthcare is very important. The fast growth of the exchange traffic in medical imagery on the Internet justifies the creation of adapted tools guaranteeing the quality and the confidentiality of the information while respecting the legal and ethical constraints, specific to this field. Visual Cryptography is the study of mathematical techniques related aspects of Information Security which allows Visual information to be encrypted in such a way that their decryption can be performed by the human visual system, without any complex cryptographic algorithms. This technique represents the secret image by several different shares of binary images. It is hard to perceive any clues about a secret image from individual shares. The secret message is revealed when parts or all of these shares are aligned and stacked together. In this paper we provide an overview of the emerging Visual Cryptography (VC) techniques used in the secure transfer of the medical images over in the internet. The related work is based on the recovering of secret image using a binary logo which is used to represent the ownership of the host image which generates shadows by visual cryptography algorithms. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 -6375(Online) Volume 1 Number 2, Sep -Oct (2010), pp. 133-146 © IAEME, http://www.iaeme.com/ijcet.html , © IAEME 134 An error correction-coding scheme is also used to create the appropriate shadow. The logo extracted from the half-toned host image identifies the cheating types. Furthermore, the logo recovers the reconstructed image when shadow is being cheated using an image self-verification scheme based on the Rehash technique which rehash the halftone logo for effective self verification of the reconstructed secret image without the need for the trusted third party (TTP). IJCET © I A E M E International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 -6367(Print), ISSN 0976 -6375(Online) Volume 1, Number 2
    corecore