8,960 research outputs found
Adaptive pumping for spectral control of random lasers
A laser is not necessarily a sophisticated device: Pumping energy into an
amplifying medium randomly filled with scatterers, a powder for instance, makes
a perfect "random laser." In such a laser, the absence of mirrors greatly
simplifies laser design, but control over emission directionality or frequency
tunability is lost, seriously hindering prospects for this otherwise simple
laser. Lately, we proposed a novel approach to harness random lasers, inspired
by spatial shaping methods recently employed for coherent light control in
complex media. Here, we experimentally implement this method in an optofluidic
random laser where scattering is weak and modes extend spatially and strongly
overlap, making individual selection a priori impossible. We show that control
over laser emission can indeed be regained even in this extreme case by
actively shaping the spatial profile of the optical pump. This unique degree of
freedom, which has never been exploited, allows selection of any desired
wavelength and shaping of lasing modes, without prior knowledge of their
spatial distribution. Mode selection is achieved with spectral selectivity down
to 0.06nm and more than 10dB side-lobe rejection. This experimental method
paves the way towards fully tunable and controlled random lasers and can be
transferred to other class of lasers.Comment: 23 pages, 7 figure
Joint Tensor Factorization and Outlying Slab Suppression with Applications
We consider factoring low-rank tensors in the presence of outlying slabs.
This problem is important in practice, because data collected in many
real-world applications, such as speech, fluorescence, and some social network
data, fit this paradigm. Prior work tackles this problem by iteratively
selecting a fixed number of slabs and fitting, a procedure which may not
converge. We formulate this problem from a group-sparsity promoting point of
view, and propose an alternating optimization framework to handle the
corresponding  () minimization-based low-rank tensor
factorization problem. The proposed algorithm features a similar per-iteration
complexity as the plain trilinear alternating least squares (TALS) algorithm.
Convergence of the proposed algorithm is also easy to analyze under the
framework of alternating optimization and its variants. In addition,
regularization and constraints can be easily incorporated to make use of
\emph{a priori} information on the latent loading factors. Simulations and real
data experiments on blind speech separation, fluorescence data analysis, and
social network mining are used to showcase the effectiveness of the proposed
algorithm
Towards on-chip generation, routing and detection of non-classical light
We fabricate an integrated photonic circuit with emitter, waveguide and
detector on one chip, based on a hybrid superconductor-semiconductor system. We
detect photoluminescence from self-assembled InGaAs quantum dots on-chip using
NbN superconducting nanowire single photon detectors. Using the fast temporal
response of these detectors we perform time-resolved studies of non-resonantly
excited quantum dots. By introducing a temporal filtering to the signal, we are
able to resonantly excite the quantum dot and detect its resonance uorescence
on-chip with the integrated superconducting single photon detector.Comment: 9 pages, 5 figure
Unveiling the population of orphan Gamma Ray Bursts
Gamma Ray Bursts are detectable in the gamma-ray band if their jets are
oriented towards the observer. However, for each GRB with a typical theta_jet,
there should be ~2/theta_jet^2 bursts whose emission cone is oriented elsewhere
in space. These off-axis bursts can be eventually detected when, due to the
deceleration of their relativistic jets, the beaming angle becomes comparable
to the viewing angle. Orphan Afterglows (OA) should outnumber the current
population of bursts detected in the gamma-ray band even if they have not been
conclusively observed so far at any frequency. We compute the expected flux of
the population of orphan afterglows in the mm, optical and X-ray bands through
a population synthesis code of GRBs and the standard afterglow emission model.
We estimate the detection rate of OA by on-going and forthcoming surveys. The
average duration of OA as transients above a given limiting flux is derived and
described with analytical expressions: in general OA should appear as daily
transients in optical surveys and as monthly/yearly transients in the mm/radio
band. We find that ~ 2 OA yr^-1 could already be detected by Gaia and up to 20
OA yr^-1 could be observed by the ZTF survey. A larger number of 50 OA yr^-1
should be detected by LSST in the optical band. For the X-ray band, ~ 26 OA
yr^-1 could be detected by the eROSITA. For the large population of OA
detectable by LSST, the X-ray and optical follow up of the light curve (for the
brightest cases) and/or the extensive follow up of their emission in the mm and
radio band could be the key to disentangle their GRB nature from other
extragalactic transients of comparable flux density.Comment: 9 pages, 4 figures, 2 tables. Accepted for publication by Astronomy
  and Astrophysic
Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique
Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. 
Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system.
Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency.
Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. 
Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria
Statistical PT-symmetric lasing in an optical fiber network
PT-symmetry in optics is a condition whereby the real and imaginary parts of
the refractive index across a photonic structure are deliberately balanced.
This balance can lead to a host of novel optical phenomena, such as
unidirectional invisibility, loss-induced lasing, single-mode lasing from
multimode resonators, and non-reciprocal effects in conjunction with
nonlinearities. Because PT-symmetry has been thought of as fragile,
experimental realizations to date have been usually restricted to on-chip
micro-devices. Here, we demonstrate that certain features of PT-symmetry are
sufficiently robust to survive the statistical fluctuations associated with a
macroscopic optical cavity. We construct optical-fiber-based coupled-cavities
in excess of a kilometer in length (the free spectral range is less than 0.8
fm) with balanced gain and loss in two sub-cavities and examine the lasing
dynamics. In such a macroscopic system, fluctuations can lead to a
cavity-detuning exceeding the free spectral range. Nevertheless, by varying the
gain-loss contrast, we observe that both the lasing threshold and the growth of
the laser power follow the predicted behavior of a stable PT-symmetric
structure. Furthermore, a statistical symmetry-breaking point is observed upon
varying the cavity loss. These findings indicate that PT-symmetry is a more
robust optical phenomenon than previously expected, and points to potential
applications in optical fiber networks and fiber lasers.Comment: Submitted to Nature Communications, Pages 1-19: Main manuscript;
  Pages 20-38: Supplementary material
A Software-Defined Channel Sounder for Industrial Environments with Fast Time Variance
Novel industrial wireless applications require wideband, real-time channel
characterization due to complex multipath propagation. Rapid machine motion
leads to fast time variance of the channel's reflective behavior, which must be
captured for radio channel characterization. Additionally, inhomogeneous radio
channels demand highly flexible measurements. Existing approaches for radio
channel measurements either lack flexibility or wide-band, real-time
performance with fast time variance. In this paper, we propose a correlative
channel sounding approach utilizing a software-defined architecture. The
approach enables real-time, wide-band measurements with fast time variance
immune to active interference. The desired performance is validated with a
demanding industrial application example.Comment: Submitted to the 15th International Symposium on Wireless
  Communication Systems (ISWCS 2018
- …
