389,847 research outputs found
Smart Augmentation - Learning an Optimal Data Augmentation Strategy
A recurring problem faced when training neural networks is that there is
typically not enough data to maximize the generalization capability of deep
neural networks(DNN). There are many techniques to address this, including data
augmentation, dropout, and transfer learning. In this paper, we introduce an
additional method which we call Smart Augmentation and we show how to use it to
increase the accuracy and reduce overfitting on a target network. Smart
Augmentation works by creating a network that learns how to generate augmented
data during the training process of a target network in a way that reduces that
networks loss. This allows us to learn augmentations that minimize the error of
that network.
Smart Augmentation has shown the potential to increase accuracy by
demonstrably significant measures on all datasets tested. In addition, it has
shown potential to achieve similar or improved performance levels with
significantly smaller network sizes in a number of tested cases
PanDA: Panoptic Data Augmentation
The recently proposed panoptic segmentation task presents a significant challenge of image understanding with computer vision by unifying semantic segmentation and instance segmentation tasks. In this paper we present an efficient and novel panoptic data augmentation (PanDA) method which operates exclusively in pixel space, requires no additional data or training, and is computationally cheap to implement. By retraining original state-of-the-art models on PanDA augmented datasets generated with a single frozen set of parameters, we show robust performance gains in panoptic segmentation, instance segmentation, as well as detection across models, backbones, dataset domains, and scales. Finally, the effectiveness of unrealistic-looking training images synthesized by PanDA suggest that one should rethink the need for image realism for efficient data augmentation
Counterexample-Guided Data Augmentation
We present a novel framework for augmenting data sets for machine learning
based on counterexamples. Counterexamples are misclassified examples that have
important properties for retraining and improving the model. Key components of
our framework include a counterexample generator, which produces data items
that are misclassified by the model and error tables, a novel data structure
that stores information pertaining to misclassifications. Error tables can be
used to explain the model's vulnerabilities and are used to efficiently
generate counterexamples for augmentation. We show the efficacy of the proposed
framework by comparing it to classical augmentation techniques on a case study
of object detection in autonomous driving based on deep neural networks
Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations
We propose a novel data augmentation for labeled sentences called contextual
augmentation. We assume an invariance that sentences are natural even if the
words in the sentences are replaced with other words with paradigmatic
relations. We stochastically replace words with other words that are predicted
by a bi-directional language model at the word positions. Words predicted
according to a context are numerous but appropriate for the augmentation of the
original words. Furthermore, we retrofit a language model with a
label-conditional architecture, which allows the model to augment sentences
without breaking the label-compatibility. Through the experiments for six
various different text classification tasks, we demonstrate that the proposed
method improves classifiers based on the convolutional or recurrent neural
networks.Comment: NAACL 201
- …
