18,983 research outputs found

    Synthesising Tabular Datasets Using Wasserstein Conditional GANS with Gradient Penalty (WCGAN-GP)

    Get PDF
    Deep learning based methods based on Generative Adversarial Networks (GANs) have seen remarkable success in data synthesis of images and text. This study investigates the use of GANs for the generation of tabular mixed dataset. We apply Wasserstein Conditional Generative Adversarial Network (WCGAN-GP) to the task of generating tabular synthetic data that is indistinguishable from the real data, without incurring information leakage. The performance of WCGAN-GP is compared against both the ground truth datasets and SMOTE using three labelled real-world datasets from different domains. Our results for WCGAN-GP show that the synthetic data preserves distributions and relationships of the real data, outperforming the SMOTE approach on both class preservation and data protection metrics. Our work is a contribution towards the automated synthesis of tabular mixed dat

    Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs)

    Full text link
    Positron emission tomography (PET) image synthesis plays an important role, which can be used to boost the training data for computer aided diagnosis systems. However, existing image synthesis methods have problems in synthesizing the low resolution PET images. To address these limitations, we propose multi-channel generative adversarial networks (M-GAN) based PET image synthesis method. Different to the existing methods which rely on using low-level features, the proposed M-GAN is capable to represent the features in a high-level of semantic based on the adversarial learning concept. In addition, M-GAN enables to take the input from the annotation (label) to synthesize the high uptake regions e.g., tumors and from the computed tomography (CT) images to constrain the appearance consistency and output the synthetic PET images directly. Our results on 50 lung cancer PET-CT studies indicate that our method was much closer to the real PET images when compared with the existing methods.Comment: 9 pages, 2 figure

    Unsupervised Text Embedding Space Generation Using Generative Adversarial Networks for Text Synthesis

    Full text link
    Generative Adversarial Networks (GAN) is a model for data synthesis, which creates plausible data through the competition of generator and discriminator. Although GAN application to image synthesis is extensively studied, it has inherent limitations to natural language generation. Because natural language is composed of discrete tokens, a generator has difficulty updating its gradient through backpropagation; therefore, most text-GAN studies generate sentences starting with a random token based on a reward system. Thus, the generators of previous studies are pre-trained in an autoregressive way before adversarial training, causing data memorization that synthesized sentences reproduce the training data. In this paper, we synthesize sentences using a framework similar to the original GAN. More specifically, we propose Text Embedding Space Generative Adversarial Networks (TESGAN) which generate continuous text embedding spaces instead of discrete tokens to solve the gradient backpropagation problem. Furthermore, TESGAN conducts unsupervised learning which does not directly refer to the text of the training data to overcome the data memorization issue. By adopting this novel method, TESGAN can synthesize new sentences, showing the potential of unsupervised learning for text synthesis. We expect to see extended research combining Large Language Models with a new perspective of viewing text as an continuous space
    • …
    corecore