1,206,540 research outputs found
Automating biomedical data science through tree-based pipeline optimization
Over the past decade, data science and machine learning has grown from a
mysterious art form to a staple tool across a variety of fields in academia,
business, and government. In this paper, we introduce the concept of tree-based
pipeline optimization for automating one of the most tedious parts of machine
learning---pipeline design. We implement a Tree-based Pipeline Optimization
Tool (TPOT) and demonstrate its effectiveness on a series of simulated and
real-world genetic data sets. In particular, we show that TPOT can build
machine learning pipelines that achieve competitive classification accuracy and
discover novel pipeline operators---such as synthetic feature
constructors---that significantly improve classification accuracy on these data
sets. We also highlight the current challenges to pipeline optimization, such
as the tendency to produce pipelines that overfit the data, and suggest future
research paths to overcome these challenges. As such, this work represents an
early step toward fully automating machine learning pipeline design.Comment: 16 pages, 5 figures, to appear in EvoBIO 2016 proceeding
Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science
As the field of data science continues to grow, there will be an
ever-increasing demand for tools that make machine learning accessible to
non-experts. In this paper, we introduce the concept of tree-based pipeline
optimization for automating one of the most tedious parts of machine
learning---pipeline design. We implement an open source Tree-based Pipeline
Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a
series of simulated and real-world benchmark data sets. In particular, we show
that TPOT can design machine learning pipelines that provide a significant
improvement over a basic machine learning analysis while requiring little to no
input nor prior knowledge from the user. We also address the tendency for TPOT
to design overly complex pipelines by integrating Pareto optimization, which
produces compact pipelines without sacrificing classification accuracy. As
such, this work represents an important step toward fully automating machine
learning pipeline design.Comment: 8 pages, 5 figures, preprint to appear in GECCO 2016, edits not yet
made from reviewer comment
Towards a New Science of a Clinical Data Intelligence
In this paper we define Clinical Data Intelligence as the analysis of data
generated in the clinical routine with the goal of improving patient care. We
define a science of a Clinical Data Intelligence as a data analysis that
permits the derivation of scientific, i.e., generalizable and reliable results.
We argue that a science of a Clinical Data Intelligence is sensible in the
context of a Big Data analysis, i.e., with data from many patients and with
complete patient information. We discuss that Clinical Data Intelligence
requires the joint efforts of knowledge engineering, information extraction
(from textual and other unstructured data), and statistics and statistical
machine learning. We describe some of our main results as conjectures and
relate them to a recently funded research project involving two major German
university hospitals.Comment: NIPS 2013 Workshop: Machine Learning for Clinical Data Analysis and
Healthcare, 201
Machine Learning Bell Nonlocality in Quantum Many-body Systems
Machine learning, the core of artificial intelligence and big data science,
is one of today's most rapidly growing interdisciplinary fields. Recently, its
tools and techniques have been adopted to tackle intricate quantum many-body
problems. In this work, we introduce machine learning techniques to the
detection of quantum nonlocality in many-body systems, with a focus on the
restricted-Boltzmann-machine (RBM) architecture. Using reinforcement learning,
we demonstrate that RBM is capable of finding the maximum quantum violations of
multipartite Bell inequalities with given measurement settings. Our results
build a novel bridge between computer-science-based machine learning and
quantum many-body nonlocality, which will benefit future studies in both areas.Comment: Main Text: 7 pages, 3 figures. Supplementary Material: 2 pages, 3
figure
- …
