12,293 research outputs found

    Data mixing at the source, relay, and in the air in multiple-access relay networks

    Get PDF
    The concept of cooperative relay is an essential technique for future cellular networks such as wireless mesh networking or wireless ad-hoc networking. In a practical relay network, channel coding, network coding, and antenna arrays, will coexist and yet the joint optimization of these conventional coding schemes and cooperative relay is not well understood. To build a design guideline for relay network, this dissertation develop a joint optimization methodology for multiple coding schemes in multiple access relay network. There are four major contributions in this thesis: First, we jointly optimize conventional coding schemes and radio resources of multiple access relay network with multiple antennas. The combined design of MIMO transmission modes, channel coding at the source, network coding at the relay have been investigated. We develop optimal design rule that minimize the end-to-end error probability. Second, we derive the fundamental tradeoff between achievable rate and reliability of multiple access relay network with multiple antennas. We consider three MIMO transmission modes, spatial multiplexing (SM), Alamouti coding as transmit diversity (TD), and Golden Coding, and random linear network coding at the relay. We compare the average decoding error probability of each transmission mode. Third, we present an interference cancellation scheme for multi-user MIMO. The proposed Log-likelihood-ratio (LLR) ordered successive interference cancellation (SIC) scheme provides 1 ~ 3 dB gain over the conventional SNR-ordered SIC and the gain increases with increasing number of users. Finally, we present a new architecture for MIMO receivers that cancel the co-channel interference (CCI) using a single radio frequency (RF) and baseband (BB) chain, while still achieving nearly the same bit error rate that can be provided by the conventional receiver requiring multiple RF/BB chains

    Wireless Video Transmission with Over-the-Air Packet Mixing

    Full text link
    In this paper, we propose a system for wireless video transmission with a wireless physical layer (PHY) that supports cooperative forwarding of interfered/superimposed packets. Our system model considers multiple and independent unicast transmissions between network nodes while a number of them serve as relays of the interfered/superimposed signals. For this new PHY the average transmission rate that each node can achieve is estimated first. Next, we formulate a utility optimization framework for the video transmission problem and we show that it can be simplified due to the features of the new PHY. Simulation results reveal the system operating regions for which superimposing wireless packets is a better choice than a typical cooperative PHY.Comment: 2012 Packet Video Worksho

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Reduced-Dimension Linear Transform Coding of Correlated Signals in Networks

    Full text link
    A model, called the linear transform network (LTN), is proposed to analyze the compression and estimation of correlated signals transmitted over directed acyclic graphs (DAGs). An LTN is a DAG network with multiple source and receiver nodes. Source nodes transmit subspace projections of random correlated signals by applying reduced-dimension linear transforms. The subspace projections are linearly processed by multiple relays and routed to intended receivers. Each receiver applies a linear estimator to approximate a subset of the sources with minimum mean squared error (MSE) distortion. The model is extended to include noisy networks with power constraints on transmitters. A key task is to compute all local compression matrices and linear estimators in the network to minimize end-to-end distortion. The non-convex problem is solved iteratively within an optimization framework using constrained quadratic programs (QPs). The proposed algorithm recovers as special cases the regular and distributed Karhunen-Loeve transforms (KLTs). Cut-set lower bounds on the distortion region of multi-source, multi-receiver networks are given for linear coding based on convex relaxations. Cut-set lower bounds are also given for any coding strategy based on information theory. The distortion region and compression-estimation tradeoffs are illustrated for different communication demands (e.g. multiple unicast), and graph structures.Comment: 33 pages, 7 figures, To appear in IEEE Transactions on Signal Processin
    • …
    corecore