3,246,275 research outputs found

    Exchange-Repairs: Managing Inconsistency in Data Exchange

    Full text link
    In a data exchange setting with target constraints, it is often the case that a given source instance has no solutions. In such cases, the semantics of target queries trivialize. The aim of this paper is to introduce and explore a new framework that gives meaningful semantics in such cases by using the notion of exchange-repairs. Informally, an exchange-repair of a source instance is another source instance that differs minimally from the first, but has a solution. Exchange-repairs give rise to a natural notion of exchange-repair certain answers (XR-certain answers) for target queries. We show that for schema mappings specified by source-to-target GAV dependencies and target equality-generating dependencies (egds), the XR-certain answers of a target conjunctive query can be rewritten as the consistent answers (in the sense of standard database repairs) of a union of conjunctive queries over the source schema with respect to a set of egds over the source schema, making it possible to use a consistent query-answering system to compute XR-certain answers in data exchange. We then examine the general case of schema mappings specified by source-to-target GLAV constraints, a weakly acyclic set of target tgds and a set of target egds. The main result asserts that, for such settings, the XR-certain answers of conjunctive queries can be rewritten as the certain answers of a union of conjunctive queries with respect to the stable models of a disjunctive logic program over a suitable expansion of the source schema.Comment: 29 pages, 13 figures, submitted to the Journal on Data Semantic

    On Coding for Cooperative Data Exchange

    Full text link
    We consider the problem of data exchange by a group of closely-located wireless nodes. In this problem each node holds a set of packets and needs to obtain all the packets held by other nodes. Each of the nodes can broadcast the packets in its possession (or a combination thereof) via a noiseless broadcast channel of capacity one packet per channel use. The goal is to minimize the total number of transmissions needed to satisfy the demands of all the nodes, assuming that they can cooperate with each other and are fully aware of the packet sets available to other nodes. This problem arises in several practical settings, such as peer-to-peer systems and wireless data broadcast. In this paper, we establish upper and lower bounds on the optimal number of transmissions and present an efficient algorithm with provable performance guarantees. The effectiveness of our algorithms is established through numerical simulations.Comment: Appeared in the proceedings of the 2010 IEEE Information Theory Workshop (ITW 2010, Cairo

    Cooperative Data Exchange with Unreliable Clients

    Full text link
    Consider a set of clients in a broadcast network, each of which holds a subset of packets in the ground set X. In the (coded) cooperative data exchange problem, the clients need to recover all packets in X by exchanging coded packets over a lossless broadcast channel. Several previous works analyzed this problem under the assumption that each client initially holds a random subset of packets in X. In this paper we consider a generalization of this problem for settings in which an unknown (but of a certain size) subset of clients are unreliable and their packet transmissions are subject to arbitrary erasures. For the special case of one unreliable client, we derive a closed-form expression for the minimum number of transmissions required for each reliable client to obtain all packets held by other reliable clients (with probability approaching 1 as the number of packets tends to infinity). Furthermore, for the cases with more than one unreliable client, we provide an approximation solution in which the number of transmissions per packet is within an arbitrarily small additive factor from the value of the optimal solution.Comment: 8 pages; in Proc. 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton 2015

    Data Exchange Problem with Helpers

    Full text link
    In this paper we construct a deterministic polynomial time algorithm for the problem where a set of users is interested in gaining access to a common file, but where each has only partial knowledge of the file. We further assume the existence of another set of terminals in the system, called helpers, who are not interested in the common file, but who are willing to help the users. Given that the collective information of all the terminals is sufficient to allow recovery of the entire file, the goal is to minimize the (weighted) sum of bits that these terminals need to exchange over a noiseless public channel in order achieve this goal. Based on established connections to the multi-terminal secrecy problem, our algorithm also implies a polynomial-time method for constructing the largest shared secret key in the presence of an eavesdropper. We consider the following side-information settings: (i) side-information in the form of uncoded packets of the file, where the terminals' side-information consists of subsets of the file; (ii) side-information in the form of linearly correlated packets, where the terminals have access to linear combinations of the file packets; and (iii) the general setting where the the terminals' side-information has an arbitrary (i.i.d.) correlation structure. We provide a polynomial-time algorithm (in the number of terminals) that finds the optimal rate allocations for these terminals, and then determines an explicit optimal transmission scheme for cases (i) and (ii)

    Regulating Data Exchange in Service Oriented Applications

    Get PDF
    We define a type system for COWS, a formalism for specifying and combining services, while modelling their dynamic behaviour. Our types permit to express policies constraining data exchanges in terms of sets of service partner names attachable to each single datum. Service programmers explicitly write only the annotations necessary to specify the wanted policies for communicable data, while a type inference system (statically) derives the minimal additional annotations that ensure consistency of services initial configuration. Then, the language dynamic semantics only performs very simple checks to authorize or block communication. We prove that the type system and the operational semantics are sound. As a consequence, we have the following data protection property: services always comply with the policies regulating the exchange of data among interacting services. We illustrate our approach through a simplified but realistic scenario for a service-based electronic marketplace

    Error Correction for Cooperative Data Exchange

    Full text link
    This paper considers the problem of error correction for a cooperative data exchange (CDE) system, where some clients are compromised or failed and send false messages. Assuming each client possesses a subset of the total messages, we analyze the error correction capability when every client is allowed to broadcast only one linearly-coded message. Our error correction capability bound determines the maximum number of clients that can be compromised or failed without jeopardizing the final decoding solution at each client. We show that deterministic, feasible linear codes exist that can achieve the derived bound. We also evaluate random linear codes, where the coding coefficients are drawn randomly, and then develop the probability for a client to withstand a certain number of compromised or failed peers and successfully deduce the complete message for any network size and any initial message distributions

    The data-exchange chase under the microscope

    Full text link
    In this paper we take closer look at recent developments for the chase procedure, and provide additional results. Our analysis allows us create a taxonomy of the chase variations and the properties they satisfy. Two of the most central problems regarding the chase is termination, and discovery of restricted classes of sets of dependencies that guarantee termination of the chase. The search for the restricted classes has been motivated by a fairly recent result that shows that it is undecidable to determine whether the chase with a given dependency set will terminate on a given instance. There is a small dissonance here, since the quest has been for classes of sets of dependencies guaranteeing termination of the chase on all instances, even though the latter problem was not known to be undecidable. We resolve the dissonance in this paper by showing that determining whether the chase with a given set of dependencies terminates on all instances is coRE-complete. For the hardness proof we use a reduction from word rewriting systems, thereby also showing the close connection between the chase and word rewriting. The same reduction also gives us the aforementioned instance-dependent RE-completeness result as a byproduct. For one of the restricted classes guaranteeing termination on all instances, the stratified sets dependencies, we provide new complexity results for the problem of testing whether a given set of dependencies belongs to it. These results rectify some previous claims that have occurred in the literature.Comment: arXiv admin note: substantial text overlap with arXiv:1303.668

    Cosmic Acceleration Data and Bulk-Brane Energy Exchange

    Full text link
    We consider a braneworld model with bulk-brane energy exchange. This allows for crossing of the w=-1 phantom divide line without introducing phantom energy with quantum instabilities. We use the latest SnIa data included in the Gold06 dataset to provide an estimate of the preferred parameter values of this braneworld model. We use three fitting approaches which provide best fit parameter values and hint towards a bulk energy component that behaves like relativistic matter which is propagating in the bulk and is moving at a speed v along the fifth dimension, while the bulk-brane energy exchange component corresponds to negative pressure and signifies energy flowing from the bulk into the brane. We find that the best fit effective equation of state parameter weffw_{eff} marginally crosses the phantom divide line w=-1. Thus, we have demonstrated both the ability of this class of braneworld models to provide crossing of the phantom divide and also that cosmological data hint towards natural values for the model parameters.Comment: 12 pages, 2 figures, added comments, references update

    Cooperative Data Exchange based on MDS Codes

    Full text link
    The cooperative data exchange problem is studied for the fully connected network. In this problem, each node initially only possesses a subset of the KK packets making up the file. Nodes make broadcast transmissions that are received by all other nodes. The goal is for each node to recover the full file. In this paper, we present a polynomial-time deterministic algorithm to compute the optimal (i.e., minimal) number of required broadcast transmissions and to determine the precise transmissions to be made by the nodes. A particular feature of our approach is that {\it each} of the KdK-d transmissions is a linear combination of {\it exactly} d+1d+1 packets, and we show how to optimally choose the value of d.d. We also show how the coefficients of these linear combinations can be chosen by leveraging a connection to Maximum Distance Separable (MDS) codes. Moreover, we show that our method can be used to solve cooperative data exchange problems with weighted cost as well as the so-called successive local omniscience problem.Comment: 21 pages, 1 figur
    corecore