3 research outputs found

    Algorithmic Complexity of Financial Motions

    Get PDF
    We survey the main applications of algorithmic (Kolmogorov) complexity to the problem of price dynamics in financial markets. We stress the differences between these works and put forward a general algorithmic framework in order to highlight its potential for financial data analysis. This framework is “general" in the sense that it is not constructed on the common assumption that price variations are predominantly stochastic in nature.algorithmic information theory; Kolmogorov complexity; financial returns; market efficiency; compression algorithms; information theory; randomness; price movements; algorithmic probability

    Estimating the Algorithmic Complexity of Stock Markets

    Full text link
    Randomness and regularities in Finance are usually treated in probabilistic terms. In this paper, we develop a completely different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We present some elements of this theory and show why it is particularly relevant to Finance, and potentially to other sub-fields of Economics as well. We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" implemented to use lossless compression algorithms on financial data. Examples are provided with both simulated and real-world financial time series. The contributions of this article are twofold. The first one is methodological : we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. The second one consists in illustrations on the daily Dow-Jones Index suggesting that beyond several well-known regularities, hidden structure may in this index remain to be identified

    FLANN Based Model to Predict Stock Price Movements of Stock Indices

    Get PDF
    Financial Forecasting or specifically Stock Market prediction is one of the hottest fields of research lately due to its commercial applications owing to the high stakes and the kinds of attractive benefits that it has to offer. Forecasting the price movements in stock markets has been a major challenge for common investors, businesses, brokers and speculators. As more and more money is being invested the investors get anxious of the future trends of the stock prices in the market. The primary area of concern is to determine the appropriate time to buy, hold or sell. In their quest to forecast, the investors assume that the future trends in the stock market are based at least in part on present and past events and data [1]. However financial time-series is one of the most ‘noisiest’ and ‘non-stationary’ signals present and hence very difficult to forecas
    corecore