18,634 research outputs found

    Six Key Enablers for Machine Type Communication in 6G

    Full text link
    While 5G is being rolled out in different parts of the globe, few research groups around the world −- such as the Finnish 6G Flagship program −- have already started posing the question: \textit{What will 6G be?} The 6G vision is a data-driven society, enabled by near instant unlimited wireless connectivity. Driven by impetus to provide vertical-specific wireless network solutions, machine type communication encompassing both its mission critical and massive connectivity aspects is foreseen to be an important cornerstone of 6G development. This article presents an over-arching vision for machine type communication in 6G. In this regard, some relevant performance indicators are first anticipated, followed by a presentation of six key enabling technologies.Comment: 14 pages, five figures, submitted to IEEE Communications Magazine for possible publicatio

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues

    Full text link
    As a promising paradigm to reduce both capital and operating expenditures, the cloud radio access network (C-RAN) has been shown to provide high spectral efficiency and energy efficiency. Motivated by its significant theoretical performance gains and potential advantages, C-RANs have been advocated by both the industry and research community. This paper comprehensively surveys the recent advances of C-RANs, including system architectures, key techniques, and open issues. The system architectures with different functional splits and the corresponding characteristics are comprehensively summarized and discussed. The state-of-the-art key techniques in C-RANs are classified as: the fronthaul compression, large-scale collaborative processing, and channel estimation in the physical layer; and the radio resource allocation and optimization in the upper layer. Additionally, given the extensiveness of the research area, open issues and challenges are presented to spur future investigations, in which the involvement of edge cache, big data mining, social-aware device-to-device, cognitive radio, software defined network, and physical layer security for C-RANs are discussed, and the progress of testbed development and trial test are introduced as well.Comment: 27 pages, 11 figure

    When Machine Learning Meets Big Data: A Wireless Communication Perspective

    Full text link
    We have witnessed an exponential growth in commercial data services, which has lead to the 'big data era'. Machine learning, as one of the most promising artificial intelligence tools of analyzing the deluge of data, has been invoked in many research areas both in academia and industry. The aim of this article is twin-fold. Firstly, we briefly review big data analysis and machine learning, along with their potential applications in next-generation wireless networks. The second goal is to invoke big data analysis to predict the requirements of mobile users and to exploit it for improving the performance of "social network-aware wireless". More particularly, a unified big data aided machine learning framework is proposed, which consists of feature extraction, data modeling and prediction/online refinement. The main benefits of the proposed framework are that by relying on big data which reflects both the spectral and other challenging requirements of the users, we can refine the motivation, problem formulations and methodology of powerful machine learning algorithms in the context of wireless networks. In order to characterize the efficiency of the proposed framework, a pair of intelligent practical applications are provided as case studies: 1) To predict the positioning of drone-mounted areal base stations (BSs) according to the specific tele-traffic requirements by gleaning valuable data from social networks. 2) To predict the content caching requirements of BSs according to the users' preferences by mining data from social networks. Finally, open research opportunities are identified for motivating future investigations.Comment: This article has been accepted by IEEE Vehicular Technology Magazin

    Network Slicing in Fog Radio Access Networks: Issues and Challenges

    Full text link
    Network slicing has been advocated by both academia and industry as a cost-efficient way to enable operators to provide networks on an as-a-service basis and meet the wide range of use cases that the fifth generation wireless network will serve. The existing works on network slicing are mainly targeted at the partition of the core network, and the prospect of network slicing in radio access networks should be jointly exploited. To solve this challenge, an enhanced network slicing in fog radio access networks (F-RANs), termed as access slicing, is proposed. This article comprehensively presents a novel architecture and related key techniques for access slicing in F-RANs. The proposed hierarchical architecture of access slicing consists of centralized orchestration layer and slice instance layer, which makes the access slicing adaptively implement in an convenient way. Meanwhile, key techniques and their corresponding solutions, including the radio and cache resource management, as well as the social-aware slicing, are presented. Open issues in terms of standardization developments and field trials are identified

    Security for Cyber-Physical Systems: Leveraging Cellular Networks and Fog Computing

    Full text link
    The reach and scale of Cyber Physical Systems (CPS) are expanding to many aspects of our everyday lives. Health, safety, transportation and education are a few areas where CPS are increasingly prevalent. There is a pressing need to secure CPS, both at the edge and at the network core. We present a hybrid framework for securing CPS that leverages the computational resources and coordination of Fog networks, and builds on cellular connectivity for low-power and resource constrained CPS devices. The routine support for cellular authentication, encryption, and integrity protection is enhanced with the addition of a cellular cloud controller to take over the management of the radio and core security contexts dedicated to CPS devices. Specialized cellular cloudlets liaison with core network components to implement localized and network-wide defense for denial-or-service, smart jamming, or unauthorized CPS tracking attacks. A comparison between our framework and recent cellular/fog solutions is provided, together with a feasibility analysis for operational framework deployment. We conclude with future research directions that we believe are pivotal to the proliferation of secure and scalable CPS.Comment: IEEE CNS 201

    Heterogeneous Cloud Radio Access Networks: A New Perspective for Enhancing Spectral and Energy Efficiencies

    Full text link
    To mitigate the severe inter-tier interference and enhance limited cooperative gains resulting from the constrained and non-ideal transmissions between adjacent base stations in heterogeneous networks (HetNets), heterogeneous cloud radio access networks (H-CRANs) are proposed as cost-efficient potential solutions through incorporating the cloud computing into HetNets. In this article, state-of-the-art research achievements and challenges on H-CRANs are surveyed. In particular, we discuss issues of system architectures, spectral and energy efficiency performances, and promising key techniques. A great emphasis is given towards promising key techniques in H-CRANs to improve both spectral and energy efficiencies, including cloud computing based coordinated multi-point transmission and reception, large-scale cooperative multiple antenna, cloud computing based cooperative radio resource management, and cloud computing based self-organizing network in the cloud converging scenarios. The major challenges and open issues in terms of theoretical performance with stochastic geometry, fronthaul constrained resource allocation, and standard development that may block the promotion of H-CRANs are discussed as well.Comment: 20 pages, 6 figures, to be published in IEEE Wireless Communication

    IoT Stream Processing and Analytics in The Fog

    Full text link
    The emerging Fog paradigm has been attracting increasing interests from both academia and industry, due to the low-latency, resilient, and cost-effective services it can provide. Many Fog applications such as video mining and event monitoring, rely on data stream processing and analytics, which are very popular in the Cloud, but have not been comprehensively investigated in the context of Fog architecture. In this article, we present the general models and architecture of Fog data streaming, by analyzing the common properties of several typical applications. We also analyze the design space of Fog streaming with the consideration of four essential dimensions (system, data, human, and optimization), where both new design challenges and the issues arise from leveraging existing techniques are investigated, such as Cloud stream processing, computer networks, and mobile computing

    Generalized Sparse and Low-Rank Optimization for Ultra-Dense Networks

    Full text link
    Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and meet the diverse performance requirements of 5G networks. With abundant access points, each with communication, computation and storage resources, UDN brings unprecedented benefits, including significant improvement in network spectral efficiency and energy efficiency, greatly reduced latency to enable novel mobile applications, and the capability of providing massive access for Internet of Things (IoT) devices. However, such great promises come with formidable research challenges. To design and operate such complex networks with various types of resources, efficient and innovative methodologies will be needed. This motivates the recent introduction of highly structured and generalizable models for network optimization. In this article, we present some recently proposed large-scale sparse and low-rank frameworks for optimizing UDNs, supported by various motivating applications. A special attention is paid on algorithmic approaches to deal with nonconvex objective functions and constraints, as well as computational scalability.Comment: This paper has been accepted by IEEE Communication Magazine, Special Issue on Heterogeneous Ultra Dense Network

    Cloud Computing - Architecture and Applications

    Full text link
    In the era of Internet of Things and with the explosive worldwide growth of electronic data volume, and associated need of processing, analysis, and storage of such humongous volume of data, it has now become mandatory to exploit the power of massively parallel architecture for fast computation. Cloud computing provides a cheap source of such computing framework for large volume of data for real-time applications. It is, therefore, not surprising to see that cloud computing has become a buzzword in the computing fraternity over the last decade. This book presents some critical applications in cloud frameworks along with some innovation design of algorithms and architecture for deployment in cloud environment. It is a valuable source of knowledge for researchers, engineers, practitioners, and graduate and doctoral students working in the field of cloud computing. It will also be useful for faculty members of graduate schools and universities.Comment: Edited Volume published by Intech Publishers, Croatia, June 2017. 138 pages. ISBN 978-953-51-3244-8, Print ISBN 978-953-51-3243-1. Link: https://www.intechopen.com/books/cloud-computing-architecture-and-application
    • …
    corecore