1,184,502 research outputs found
Evidence of Deep Water Penetration in Silica during Stress Corrosion Fracture
We measure the thickness of the heavy water layer trapped under the stress corrosion fracture surface of silica using neutron reflectivity experiments. We show that the penetration depth is 65–85 Å, suggesting the presence of a damaged zone of ~100 Å extending ahead of the crack tip during its propagation. This estimate of the size of the damaged zone is compatible with other recent results
The Ability of Cyanobacterial Cells to Restore UV-B Radiation Induced Damage to Photosystem II is Influenced by Photolyase Dependent DNA Repair
Damage of DNA and Photosystem-II are among the most significant effects of UV-B irradiation in photosynthetic organisms. Both damaged DNA and Photosystem-II can be repaired, which represent important defense mechanisms against detrimental UV-B effects. Correlation of Photosystem-II damage and repair with the concurrent DNA damage and repair was investigated in the cyanobacterium Synechocystis PCC6803 using its wild type and a photolyase deficient mutant, which is unable to repair UV-B induced DNA damages. A significant amount of damaged DNA accumulated during UV-B exposure in the photolyase mutant concomitant with decreased Photosystem-II activity and D1 protein amount. The transcript level of psbA3, which is a UV-responsive copy of the psbA gene family encoding the D1 subunit of the Photosystem-II reaction center, is also decreased in the photolyase mutant. The wild-type cells, however, did not accumulate damaged DNA during UV-B exposure, suffered smaller losses of Photosystem-II activity and D1 protein, and maintained higher level of psbA3 transcripts than the photolyase mutant. It is concluded that the repair capacity of Photosystem-II depends on the ability of cells to repair UV-B-damaged DNA through maintaining the transcription of genes, which are essential for protein synthesis-dependent repair of the Photosystem-II reaction center
Piecewise constant reconstruction of damaged color images
A variational model for reconstruction of damaged color images is studied, in
particular in the case where only finitely many colors are admissible for the
reconstructed image. An existence result and regularity properties of
minimizers are presented
Statistical properties of fractures in damaged materials
We introduce a model for the dynamics of mud cracking in the limit of of
extremely thin layers. In this model the growth of fracture proceeds by
selecting the part of the material with the smallest (quenched) breaking
threshold. In addition, weakening affects the area of the sample neighbour to
the crack. Due to the simplicity of the model, it is possible to derive some
analytical results. In particular, we find that the total time to break down
the sample grows with the dimension L of the lattice as L^2 even though the
percolating cluster has a non trivial fractal dimension. Furthermore, we obtain
a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter
Surface state reconstruction in ion-damaged SmB_6
We have used ion-irradiation to damage the (001) surfaces of SmB_6 single
crystals to varying depths, and have measured the resistivity as a function of
temperature for each depth of damage. We observe a reduction in the residual
resistivity with increasing depth of damage. Our data are consistent with a
model in which the surface state is not destroyed by the ion-irradiation, but
instead the damaged layer is poorly conducting and the initial surface state is
reconstructed below the damage. This behavior is consistent with a surface
state that is topologically protected.Comment: 5 pages, 3 figure
- …
