1,242,447 research outputs found
Molecular Dynamics Simulations
A tutorial introduction to the technique of Molecular Dynamics (MD) is given,
and some characteristic examples of applications are described. The purpose and
scope of these simulations and the relation to other simulation methods is
discussed, and the basic MD algorithms are described. The sampling of intensive
variables (temperature T, pressure p) in runs carried out in the microcanonical
(NVE) ensemble (N= particle number, V = volume, E = energy) is discussed, as
well as the realization of other ensembles (e.g. the NVT ensemble). For a
typical application example, molten SiO2, the estimation of various transport
coefficients (self-diffusion constants, viscosity, thermal conductivity) is
discussed. As an example of Non-Equilibrium Molecular Dynamics (NEMD), a study
of a glass-forming polymer melt under shear is mentioned.Comment: 38 pages, 11 figures, to appear in J. Phys.: Condens. Matte
Accelerated Stokesian Dynamics simulations
A new implementation of the conventional Stokesian Dynamics (SD) algorithm, called accelerated Stokesian Dynamics (ASD), is presented. The equations governing the motion of N particles suspended in a viscous fluid at low particle Reynolds number are solved accurately and efficiently, including all hydrodynamic interactions, but with a significantly lower computational cost of O(N ln N). The main differences from the conventional SD method lie in the calculation of the many-body long-range interactions, where the Ewald-summed wave-space contribution is calculated as a Fourier transform sum and in the iterative inversion of the now sparse resistance matrix. The new method is applied to problems in the rheology of both structured and random suspensions, and accurate results are obtained with much larger numbers of particles. With access to larger N, the high-frequency dynamic viscosities and short-time self-diffusivities of random suspensions for volume fractions above the freezing point are now studied. The ASD method opens up an entire new class of suspension problems that can be investigated, including particles of non-spherical shape and a distribution of sizes, and the method can readily be extended to other low-Reynolds-number-flow problems
Molecular dynamics simulations of ballistic annihilation
Using event-driven molecular dynamics we study one- and two-dimensional
ballistic annihilation. We estimate exponents and that describe
the long-time decay of the number of particles () and of
their typical velocity (). To a good accuracy our results
confirm the scaling relation . In the two-dimensional case our
results are in a good agreement with those obtained from the Boltzmann kinetic
theory.Comment: 4 pages; some changes; Physical Review E (in press
Molecular Dynamics Simulations of Detonation Instability
After making modifications to the Reactive Empirical Bond Order potential for
Molecular Dynamics (MD) of Brenner et al. in order to make the model behave in
a more conventional manner, we discover that the new model exhibits detonation
instability, a first for MD. The instability is analyzed in terms of the
accepted theory.Comment: 7 pages, 6 figures. Submitted to Phys. Rev. E Minor edits. Removed
parenthetical statement about P^\nu from conclusion
Molecular dynamics simulations of lead clusters
Molecular dynamics simulations of nanometer-sized lead clusters have been
performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf
269/270}, 1109 (1992)). The binding energies of clusters forming crystalline
(fcc), decahedron and icosahedron structures are compared, showing that fcc
cuboctahedra are the most energetically favoured of these polyhedral model
structures. However, simulations of the freezing of liquid droplets produced a
characteristic form of ``shaved'' icosahedron, in which atoms are absent at the
edges and apexes of the polyhedron. This arrangement is energetically favoured
for 600-4000 atom clusters. Larger clusters favour crystalline structures.
Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect
fcc Wulff particle, containing a number of parallel stacking faults. The
effects of temperature on the preferred structure of crystalline clusters below
the melting point have been considered. The implications of these results for
the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other
minor changes for publicatio
Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations
To enable the processing of chemical gradients, chemotactic bacteria possess large arrays of transmembrane chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW, organized as coupled core-signaling units (CSU). Despite decades of study, important questions surrounding the molecular mechanisms of sensory signal transduction remain unresolved, owing especially to the lack of a high-resolution CSU structure. Here, we use cryo-electron tomography and sub-tomogram averaging to determine a structure of the Escherichia coli CSU at sub-nanometer resolution. Based on our experimental data, we use molecular simulations to construct an atomistic model of the CSU, enabling a detailed characterization of CheA conformational dynamics in its native structural context. We identify multiple, distinct conformations of the critical P4 domain as well as asymmetries in the localization of the P3 bundle, offering several novel insights into the CheA signaling mechanism
Kinetic Simulations of Plasmoid Chain Dynamics
The dynamics of a plasmoid chain is studied with three dimensional
Particle-in-Cell simulations. The evolution of the system with and without a
uniform guide field, whose strength is 1/3 the asymptotic magnetic field, is
investigated. The plasmoid chain forms by spontaneous magnetic reconnection:
the tearing instability rapidly disrupts the initial current sheet generating
several small-scale plasmoids, that rapidly grow in size coalescing and
kinking. The plasmoid kink is mainly driven by the coalescence process. It is
found that the presence of guide field strongly influences the evolution of the
plasmoid chain. Without a guide field, a main reconnection site dominates and
smaller reconnection regions are included in larger ones, leading to an
hierarchical structure of the plasmoid-dominated current sheet. On the contrary
in presence of a guide field, plasmoids have approximately the same size and
the hierarchical structure does not emerge, a strong core magnetic field
develops in the center of the plasmoid in the direction of the existing guide
field, and bump-on-tail instability, leading to the formation of electron
holes, is detected in proximity of the plasmoids
Molecular dynamics simulations of glassy polymers
We review recent results from computer simulation studies of polymer glasses,
from chain dynamics around the glass transition temperature Tg to the
mechanical behaviour below Tg. These results clearly show that modern computer
simulations are able to address and give clear answers to some important issues
in the field, in spite of the obvious limitations in terms of length and time
scales. In the present review we discuss the cooling rate effects, and dynamic
slowing down of different relaxation processes when approaching Tg for both
model and chemistry-specific polymer glasses. The impact of geometric
confinement on the glass transition is discussed in detail. We also show that
computer simulations are very useful tools to study structure and mechanical
response of glassy polymers. The influence of large deformations on mechanical
behaviour of polymer glasses in general, and strain hardening effect in
particular are reviewed. Finally, we suggest some directions for future
research, which we believe will be soon within the capabilities of state of the
art computer simulations, and correspond to problems of fundamental interest.Comment: To apear in "Soft Matter
- …
