339,163 research outputs found

    Clinical characteristics of unknown symptom onset stroke patients with and without diffusion-weighted imaging and fluid-attenuated inversion recovery mismatch

    Get PDF
    Background: Diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) mismatch was suggested to identify stroke patients with unknown time of symptom onset likely to be within the time window for thrombolysis. Aims: We aimed to study clinical characteristics associated with DWI-FLAIR mismatch in patients with unknown onset stroke. Methods: We analyzed baseline MRI and clinical data from patients with acute ischemic stroke proven by DWI from WAKE-UP, an investigator-initiated, randomized, placebo-controlled trial of MRI-based thrombolysis in stroke patients with unknown time of symptom onset. Clinical characteristics were compared between patients with and without DWI-FLAIR mismatch. Results: Of 699 patients included, 418 (59.8%) presented with DWI-FLAIR mismatch. A shorter delay between last seen well and symptom recognition (p = 0.0063), a shorter delay between symptom recognition and arrival at hospital (p = 0.0025), and history of atrial fibrillation (p = 0.19) were predictors of DWI-FLAIR mismatch in multivariate analysis. All other characteristics were comparable between groups. Conclusions: There are only minor differences in measured clinical characteristics between unknown symptom onset stroke patients with and without DWI-FLAIR mismatch. DWI-FLAIR mismatch as an indicator of stroke onset within 4.5 h shows no relevant association with commonly collected clinical characteristics of stroke patients

    Diffusion weighted imaging in cystic fibrosis disease: beyond morphological imaging

    Get PDF
    To explore the feasibility of diffusion-weighted imaging (DWI) to assess inflammatory lung changes in patients with Cystic Fibrosis (CF) METHODS: CF patients referred for their annual check-up had spirometry, chest-CT and MRI on the same day. MRI was performed in a 1.5 T scanner with BLADE and EPI-DWI sequences (b = 0-600 s/mm(2)). End-inspiratory and end-expiratory scans were acquired in multi-row scanners. DWI was scored with an established semi-quantitative scoring system. DWI score was correlated to CT sub-scores for bronchiectasis (CF-CTBE), mucus (CF-CTmucus), total score (CF-CTtotal-score), FEV1, and BMI. T-test was used to assess differences between patients with and without DWI-hotspots

    DUI/DWI Arrests in Alaska: 2000–2011

    Get PDF
    This fact sheet presents data on driving under the influence (DUI) and driving while intoxicated (DWI) arrests made by Alaska police agencies for the period 2000 through 2011. The report describes overall rates of arrest for DUI/DWI during the 12-year period, as well as DUI/DWI arrest rates by major law enforcement agency, by sex, and by race. Data is drawn from the annual Crime in Alaska report of the Alaska Department of Public Safety, which represents the State of Alaska's contribution to the FBI's Uniform Crime Reports (UCR) program.Bureau of Justice Statistics, U.S. Department of JusticeDUI/DWI arresst in Alaska, 2000–2011 / DUI/DWI Arrests in Anchorage, 2000–2011 / Summary / Note

    Dispositions of DWI Arrestees: Anchorage, 1996

    Get PDF
    This study explores the dispositions of subjects arrested in Anchorage, Alaska during 1996 for driving while intoxicated (DWI). The project was designed to describe the Anchorage criminal justice system’s processing of DWI offenders and to isolate legal and extralegal variables that predict various offender dispositions. This report presents a literature review of studies relating to legal and extra-legal factors affecting court processing of offenders; discusses methodologies of the present study; presents flow charts of DWI arrestee processing in Anchorage; and presents the multivariate analysis that isolates significant correlates of DWI arrest disposition.Anchorage Safe Communities Alaska Highway Safety Planning Agency, Alaska Department of TransportationIntroduction / Literature Review / Data and Method / Profiles / Dispositions of DWI Suspects in Anchorage: The Process / Correlates of Disposition / Summary / Bibliography / Appendix - Sex and Race Specific Flow Chart

    An evaluation of morphological and functional multi-parametric MRI sequences in classifying non-muscle and muscle invasive bladder cancer

    Get PDF
    Objectives: Our goal is to determine the ability of multi-parametric magnetic resonance imaging (mpMRI) to differentiate muscle invasive bladder cancer (MIBC) from non-muscle invasive bladder cancer (NMIBC). Methods: Patients underwent mpMRI before tumour resection. Four MRI sets, i.e. T2-weighted (T2W) + perfusion-weighted imaging (PWI), T2W plus diffusion-weighted imaging (DWI), T2W + DWI + PWI, and T2W + DWI + PWI + dif-fusion tensor imaging (DTI) were interpreted qualitatively by two radiologists, blinded to histology results. PWI, DWI and DTI were also analysed quantitatively. Accuracy was determined using histopathology as the reference standard. Results: A total of 82 tumours were analysed. Ninety-six percent of T1-labeled tumours by the T2W + DWI + PWI image set were confirmed to be NMIBC at histopathology. Overall accuracy of the complete mpMRI protocol was 94% in differentiating NMIBC from MIBC. PWI, DWI and DTI quantitative parameters were shown to be significantly different in cancerous versus non-cancerous areas within the bladder wall in T2-labelled lesions. Conclusions: MpMRI with DWI and DTI appears a reliable staging tool for bladder cancer. If our data are validated, then mpMRI could precede cystoscopic resection to allow a faster recognition of MIBC and accelerated treatment pathways. Key Points: • A critical step in BCa staging is to differentiate NMIBC from MIBC. • Morphological and functional sequences are reliable techniques in differentiating NMIBC from MIBC. • Diffusion tensor imaging could be an additional tool in BCa staging

    Information-Theoretic Registration with Explicit Reorientation of Diffusion-Weighted Images

    Full text link
    We present an information-theoretic approach to the registration of images with directional information, and especially for diffusion-Weighted Images (DWI), with explicit optimization over the directional scale. We call it Locally Orderless Registration with Directions (LORD). We focus on normalized mutual information as a robust information-theoretic similarity measure for DWI. The framework is an extension of the LOR-DWI density-based hierarchical scale-space model that varies and optimizes the integration, spatial, directional, and intensity scales. As affine transformations are insufficient for inter-subject registration, we extend the model to non-rigid deformations. We illustrate that the proposed model deforms orientation distribution functions (ODFs) correctly and is capable of handling the classic complex challenges in DWI-registrations, such as the registration of fiber-crossings along with kissing, fanning, and interleaving fibers. Our experimental results clearly illustrate a novel promising regularizing effect, that comes from the nonlinear orientation-based cost function. We show the properties of the different image scales and, we show that including orientational information in our model makes the model better at retrieving deformations in contrast to standard scalar-based registration.Comment: 16 pages, 19 figure

    Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator.

    Get PDF
    Deep brain stimulation (DBS) for Parkinson\u27s disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS

    Sensitivity of Diffusion-Weighted STEAM MRI and EPI-DWI to Infratentorial Ischemic Stroke

    Get PDF
    Objectives To assess the sensitivity of stimulated echo acquisition mode diffusion weighted imaging (STEAM-DWI) to ischemic stroke in comparison to echo-planar imaging diffusion weighted imaging (EPI-DWI) in the infratentorial compartment. Methods Fifty-seven patients presenting with clinical features of infratentorial stroke underwent STEAM-DWI, high-resolution EPI-DWI (HR-DWI, 2.5 mm slice thickness) and low-resolution EPI-DWI (LR-DWI, 5 mm slice thickness). Four readers assessed the presence of ischemic lesions and artifacts. Agreement between sequences and interobserver agreement on the presence of ischemia were calculated. The sensitivities of the DWI sequences were calculated in 45 patients with a confirmed diagnosis of infratentorial stroke. Results Median time from symptom onset to imaging was 24 hours. STEAM- DWI agreed with LR-DWI in 89.5% of cases (kappa = 0.72, p<0.0001) and with HR- DWI in 89.5% of cases (kappa = 0.68, p<0.0001). STEAM-DWI showed fewer intraparenchymal artifacts (1/57) than HR-DWI (44/57) and LR-DWI (41/57). Ischemia was visible in 87% of cases for LR-DWI, 93% of cases for HR-DWI, and 89% of cases for STEAM-DWI. Interobserver agreement was good for STEAM-DWI (kappa = 0.62, p<0.0001). Conclusions Compared to the best currently available MR sequence for detecting ischemia (HR-DWI), STEAM-DWI shows fewer artifacts and a similar sensitivity to infratentorial stroke
    • …
    corecore