298,750 research outputs found

    DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses-Inflammations and Cancers Can Have High Genomic Risks.

    Get PDF
    Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA D

    DNA damage stress: Cui prodest?

    Get PDF
    DNA is an entity shielded by mechanisms that maintain genomic stability and are essential for living cells; however, DNA is constantly subject to assaults from the environment throughout the cellular life span, making the genome susceptible to mutation and irreparable damage. Cells are prepared to mend such events through cell death as an extrema ratio to solve those threats from a multicellular perspective. However, in cells under various stress conditions, checkpoint mechanisms are activated to allow cells to have enough time to repair the damaged DNA. In yeast, entry into the cell cycle when damage is not completely repaired represents an adaptive mechanism to cope with stressful conditions. In multicellular organisms, entry into cell cycle with damaged DNA is strictly forbidden. However, in cancer development, individual cells undergo checkpoint adaptation, in which most cells die, but some survive acquiring advantageous mutations and selfishly evolve a conflictual behavior. In this review, we focus on how, in cancer development, cells rely on checkpoint adaptation to escape DNA stress and ultimately to cell death

    Hydrogen peroxide induced genomic instability in nucleotide excision repair-deficient lymphoblastoid cells

    Get PDF
    Copyright @ 2010 Gopalakrishnan et al; licensee BioMed Central Ltd.Background The Nucleotide Excision Repair (NER) pathway specialises in UV-induced DNA damage repair. Inherited defects in the NER can predispose individuals to Xeroderma Pigmentosum (XP). UV-induced DNA damage cannot account for the manifestation of XP in organ systems not directly exposed to sunlight. While the NER has recently been implicated in the repair of oxidative DNA lesions, it is not well characterised. Therefore we sought to investigate the role of NER factors Xeroderma Pigmentosum A (XPA), XPB and XPD in oxidative DNA damage-repair by subjecting lymphoblastoid cells from patients suffering from XP-A, XP-D and XP-B with Cockayne Syndrome to hydrogen peroxide (H2O2). Results Loss of functional XPB or XPD but not XPA led to enhanced sensitivity towards H2O2-induced cell death. XP-deficient lymphoblastoid cells exhibited increased susceptibility to H2O2-induced DNA damage with XPD showing the highest susceptibility and lowest repair capacity. Furthermore, XPB- and XPD-deficient lymphoblastoid cells displayed enhanced DNA damage at the telomeres. XPA- and XPB-deficient lymphoblastoid cells also showed differential regulation of XPD following H2O2 treatment. Conclusions Taken together, our data implicate a role for the NER in H2O2-induced oxidative stress management and further corroborates that oxidative stress is a significant contributing factor in XP symptoms. Resistance of XPA-deficient lymphoblastoid cells to H2O2-induced cell death while harbouring DNA damage poses a potential cancer risk factor for XPA patients. Our data implicate XPB and XPD in the protection against oxidative stress-induced DNA damage and telomere shortening, and thus premature senescence.This research is supported by the Defence Innovative Research Programme, Defence Science and Technology Agency, Singapore (POD: 0613592) and the Academic Research Fund, Ministry of Education, Singapore (T206B3108). Supported in part by a grant from British Council, PMI2 Connect (Grant Number: RC134)

    γ-H2AX foci as in vivo effect biomarker in children emphasize the importance to minimize x-ray doses in paediatric CT imaging

    Get PDF
    Objectives: Investigation of DNA damage induced by CT x-rays in paediatric patients versus patient dose in a multicentre setting. Methods: From 51 paediatric patients (median age, 3.8 years) who underwent an abdomen or chest CT examination in one of the five participating radiology departments, blood samples were taken before and shortly after the examination. DNA damage was estimated by scoring gamma-H2AX foci in peripheral blood T lymphocytes. Patient-specific organ and tissue doses were calculated with a validated Monte Carlo program. Individual lifetime attributable risks (LAR) for cancer incidence and mortality were estimated according to the BEIR VII risk models. Results: Despite the low CT doses, a median increase of 0.13 gamma-H2AX foci/cell was observed. Plotting the induced gamma-H2AX foci versus blood dose indicated a low-dose hypersensitivity, supported also by an in vitro dose-response study. Differences in dose levels between radiology centres were reflected in differences in DNA damage. LAR of cancer mortality for the paediatric chest CT and abdomen CT cohort was 0.08 and 0.13% respectively. Conclusion: CT x-rays induce DNA damage in paediatric patients even at low doses and the level of DNA damage is reduced by application of more effective CT dose reduction techniques and paediatric protocols

    Radiation induced DNA damage responses

    Get PDF
    The amazing feature of ionising radiation (IR) as a DNA damaging agent is the range of lesions it induces. Such lesions include base damage, single strand breaks (SSBs), double strand breaks (DSBs) of varying complexity and DNA cross links. A range of DNA damage response mechanisms operate to help maintain genomic stability in the face of such damage. Such mechanisms include pathways of DNA repair and signal transduction mechanisms. Increasing evidence suggests that these pathways operate co-operatively. In addition, the relative impact of one mechanism over another most probably depends upon the cell cycle phase and tissue type. Here, the distinct damage response pathways are reviewed and the current understanding of the interplay between them is considered. Since DNA DSBs are the major lethal lesion induced by IR, the focus lies in the mechanisms responding to direct or indirectly induced DSBs

    Autophagy in DNA Damage Response

    Get PDF
    DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11–Rad50–Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy

    Dextran sulfate enhances the level of an oxidative DNA damage biomarker, 8-oxo-7,8-dihydro-2 0-deoxyguanosine, in rat colonic mucosa

    Get PDF
    Dextran sodium sulfate (DSS) given in drinking water can induce colonic Inflammation and produce colorectal tumors in rodents, although it is not directly genotoxic. The hypothesis that DSS can produce free radicals and induce oxidative DNA damage in colonic mucosa has been tested. In rats fed for 2 days with water containing 3% and 6% DSS, colonic Inflammation manifestations were recorded and 8-oxo-7,8-dihydro-2 0-deoxyguanosine (8-oxodGuo), a major biomarker of oxidative DNA damage, was assayed in colonic mucosa. As compared with control rats given pure water, inflammatory manifestations were seen in rats given DSS. At the same time, 8-oxodGuo levels in colonic mucosa were doubled (P , 0:001). These results suggest that formation of oxidative DNA damage in colonic mucosa depends on inflammation and maybe on the production of reactive oxygen species. This study shows that DSS can induce oxidative DNA damage within only 2 days, which could explain in part its carcinogenic properties

    Elevated Level of DNA Damage and Impaired Repair of Oxidative DNA Damage in Patients with Recurrent Depressive Disorder

    Get PDF
    Background: Depressive disorder (DD), including recurrent DD (rDD), is a severe psychological disease, which affects a large percentage of the world population. Although pathogenesis of the disease is not known, a growing body of evidence shows that inflammation together with oxidative stress may contribute to development of DD. Since reactive oxygen species produced during stress may damage DNA, we wanted to evaluate the extent of DNA damage and efficiency of DNA repair in patients with depression. Material and Methods: We measured and compared the extent of endogenous DNA damage – single- and double-strand breaks, alkali-labile sites, and oxidative damage of the pyrimidines and purines – in peripheral blood mononuclear cells isolated from rDD patients (n=40) and healthy controls (n=46) using comet assay. We also measured DNA damage evoked by hydrogen peroxide and monitored changes in DNA damage during repair incubation. Results: We found an increased number DNA breaks, alkali-labile sites, and oxidative modification of DNA bases in the patients compared to the controls. Exposure to hydrogen peroxide evoked the same increased damage in both groups. Examination of the repair kinetics of both groups revealed that the lesions were more efficiently repaired in the controls than in the patients. Conclusions: For the first time we showed that patients with depression, compared with non-depresses individuals, had more DNA breaks, alkali-labile sites, and oxidative DNA damage, and that those lesions may be accumulated by impairments of the DNA repair systems. More studies must be conducted to elucidate the role of DNA damage and repair in depression
    corecore