131,200 research outputs found
Testing Quantum Dynamics in Genetic Information Processing
Does quantum dynamics play a role in DNA replication? What type of tests
would reveal that? Some statistical checks that distinguish classical and
quantum dynamics in DNA replication are proposed.Comment: 4 pages, latex. (v2) Several points elaborated. Published version,
formatted according to the journal styl
Gene Expression and the Physiological Role of Transforming Growth Factor-α in the Mouse Pituitary
Transforming growth factor-alpha (TGF-alpha), a member of the epidermal growth factor (EGF) family, is produced within the mouse anterior pituitaries. However, the cell types of TGF-alpha-expressing cells and the physiological roles of TGF-a within mouse pituitary glands remain unclear. The aim of the present study was to localize TGF-alpha mRNA-expressing cells, and to clarify the involvement of TGF-alpha in estrogen-induced DNA replication in mouse anterior pituitary cells. Northern blot analysis demonstrated TGF-alpha mRNA expression in adult male and female mouse anterior pituitaries. In situ hybridization analysis of the pituitaries in these mice showed that TGF-alpha mRNA-expressing cells in the anterior pituitary are round, oval, and medium-sized. TGF-alpha mRNA was colocalized in most of the growth hormone (GH) mRNA-expressing cells, while only some of the prolactin (PRL) mRNA-expressing cells. DNA replication in the anterior pituitary cells was detected by monitoring the cellular uptake of a thymidine analogue, bromodeoxyuridine (BrdU) in a primary serum-free culture system. Estradiol-17beta (E2) and TGF-alpha treatment increased the number of BrdU-labelled mammotrophs, indicating that E2 and TGF-alpha treatment stimulates the DNA replication in mammotrophs. Immunoneutralization of TGF-alpha with anti-TGF-alpha-antibodies nullified the E2-induced increase in DNA replication. RT-PCR analysis of TGF-alpha mRNA expression in ovariectomized female mice revealed that E2 increases TGF-alpha mRNA levels. These results indicate that the TGF-alpha produced primarily in the somatotrophs mediates the stimulatory effects of estrogen on the DNA replication of pituitary cells in a paracrine or autocrine manner
Proficient replication of the yeast genome by a viral DNA polymerase
DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication
Error correction during DNA replication
DNA polymerase (DNAP) is a dual-purpose enzyme that plays two opposite roles
in two different situations during DNA replication. It plays its normal role as
a {\it polymerase} catalyzing the elongation of a new DNA molecule by adding a
monomer. However, it can switch to the role of an {\it exonuclease} and shorten
the same DNA by cleavage of the last incorporated monomer from the nascent DNA.
Just as misincorporated nucleotides can escape exonuclease causing replication
error, correct nucleotide may get sacrificed unnecessarily by erroneous
cleavage. The interplay of polymerase and exonuclease activities of a DNAP is
explored here by developing a minimal stochastic kinetic model of DNA
replication. Exact analytical expressions are derived for a few key statistical
distributions; these characterize the temporal patterns in the mechanical
stepping and the chemical (cleavage) reaction. The Michaelis-Menten-like
analytical expression derived for the average rates of these two processes not
only demonstrate the effects of their coupling, but are also utilized to
measure the extent of {\it replication error} and {\it erroneous cleavage}.Comment: Accepted for publication in Physical Review E (8 pages, including 6
figures
Kinetic model of DNA replication in eukaryotic organisms
We formulate a kinetic model of DNA replication that quantitatively describes
recent results on DNA replication in the in vitro system of Xenopus laevis
prior to the mid-blastula transition. The model describes well a large amount
of different data within a simple theoretical framework. This allows one, for
the first time, to determine the parameters governing the DNA replication
program in a eukaryote on a genome-wide basis. In particular, we have
determined the frequency of origin activation in time and space during the cell
cycle. Although we focus on a specific stage of development, this model can
easily be adapted to describe replication in many other organisms, including
budding yeast.Comment: 10 pages, 6 figures: see also cond-mat/0306546 & physics/030615
Drf1-dependent Kinase Interacts with Claspin through a Conserved Protein Motif
The Dbf4/Drf1-dependent kinase (DDK) is required for the initiation of DNA replication in eukaryotes. Another protein, Claspin, mediates the activation of a cellular checkpoint response to stalled replication forks and is also a regulator of replication. In this study, we found that DDK phosphorylates Claspin in vitro and forms a nuclear complex containing Cdc7, Drf1, and Claspin in Xenopus egg extracts. In addition, purified Claspin and DDK are capable of a direct in vitro interaction. We identified a conserved binding site on Claspin required for its interaction with DDK. This site corresponds to the first of two sequence repeats in the Chk1-binding domain of Claspin. Furthermore, we have established that two amino acids in this motif, Asp^(861) and Gln^(866), are essential for the interaction between Claspin and DDK. We found that mutant forms of Claspin incapable of interacting with DDK are still able to associate with and activate Chk1 in response to DNA replication blockages. However, Claspin-depleted egg extracts that have been reconstituted with these mutants of Claspin undergo DNA replication more slowly. These findings suggest that the interaction of DDK with Claspin mediates a checkpoint-independent function of Claspin related to DNA replication
Tel1ATM dictates the replication timing of short yeast telomeres
Telomerase action is temporally linked to DNA replication. Although yeast telomeres are normally late replicating, telomere shortening leads to early firing of subtelomeric DNA replication origins. We show that double‐strand breaks flanked by short telomeric arrays cause origin firing early in S phase at late‐replicating loci and that this effect on origin firing time is dependent on the Tel1ATM checkpoint kinase. The effect of Tel1ATM on telomere replication timing extends to endogenous telomeres and is stronger than that elicited by Rif1 loss. These results establish that Tel1ATM specifies not only the extent but also the timing of telomerase recruitment
Identification of a Novel 81-kDa Component of the Xenopus Origin Recognition Complex
The Xenopus origin recognition complex is essential for chromosomal DNA replication in cell-free extracts. We have immunopurified the Xenopus origin recognition complex with anti-Xorc2 antibodies and analyzed its composition and properties. Xorc2 (p63) is specifically associated with Xorc1 (p115) and up to four additional polypeptides (p81, p78, p45, and p40). The cDNA encoding p81 is highly homologous to various expressed sequence tags from humans and mice encoding a protein of previously unknown function. Immunodepletion of p81 from Xenopus egg extracts, which also results in the removal of Xorc2, completely abolishes chromosomal DNA replication. Thus, p81 appears to play a crucial role at S phase in higher eukaryotes
- …
