184,567 research outputs found
Recommended from our members
Cohesin causes replicative DNA damage by trapping DNA topological stress
DNA topological stress inhibits DNA replication fork (RF) progression and contributes to DNA replication stress. In Saccharomyces cerevisiae, we demonstrate that centromeric DNA and the rDNA array are especially vulnerable to DNA topological stress during replication. The activity of the SMC complexes cohesin and condensin are linked to both the generation and repair of DNA topological-stress-linked damage in these regions. At cohesin-enriched centromeres, cohesin activity causes the accumulation of DNA damage, RF rotation, and pre-catenation, confirming that cohesin-dependent DNA topological stress impacts on normal replication progression. In contrast, at the rDNA, cohesin and condensin activity inhibit the repair of damage caused by DNA topological stress. We propose that, as well as generally acting to ensure faithful genetic inheritance, SMCs can disrupt genome stability by trapping DNA topological stress
Dicer prevents genome instability in response to replication stress
Dicer, an endoribonuclease best-known for its role in microRNA biogenesis and RNA interference pathway, has been shown to play a role in the DNA damage response and repair of double-stranded DNA breaks (DSBs) in mammalian cells. However, it remains unknown whether Dicer is also important to preserve genome integrity upon replication stress. To address this question, we focused our study on common fragile sites (CFSs), which are susceptible to breakage after replication stress. We show that inhibition of the Dicer pathway leads to an increase in CFS expression upon induction of replication stress and to an accumulation of 53BP1 nuclear bodies, indicating transmission of replication-associated damage. We also show that in absence of a functional Dicer or Drosha, the assembly into nuclear foci of the Fanconi anemia (FA) protein FANCD2 and of the replication and checkpoint factor TopBP1 in response to replication stress is impaired, and the activation of the S-phase checkpoint is defective. Based on these results, we propose that Dicer pre-vents genomic instability after replication stress, by allowing the proper recruitment to stalled forks of proteins that are necessary to maintain replication fork stability and activate the S-phase checkpoint, thus limiting cells from proceeding into mitosis with under-replicated DNA
Evidence for a role of Arabidopsis CDT1 proteins in gametophyte development and maintenance of genome integrity
Meristems retain the ability to divide throughout the life cycle of plants, which can last for over 1000 years in some species. Furthermore, the germline is not laid down early during embryogenesis but originates from the meristematic cells relatively late during development. Thus, accurate cell cycle regulation is of utmost importance to avoid the accumulation of mutations during vegetative growth and reproduction. The Arabidopsis thaliana genome encodes two homologs of the replication licensing factor CDC10 Target1 (CDT1), and overexpression of CDT1a stimulates DNA replication. Here, we have investigated the respective functions of Arabidopsis CDT1a and CDT1b. We show that CDT1 proteins have partially redundant functions during gametophyte development and are required for the maintenance of genome integrity. Furthermore, CDT1-RNAi plants show endogenous DNA stress, are more tolerant than the wild type to DNA-damaging agents, and show constitutive induction of genes involved in DNA repair. This DNA stress response may be a direct consequence of reduced CDT1 accumulation on DNA repair or may relate to the ability of CDT1 proteins to form complexes with DNA polymerase e, which functions in DNA replication and in DNA stress checkpoint activation. Taken together, our results provide evidence for a crucial role of Arabidopsis CDT1 proteins in genome stability
The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.Cell Death and Differentiation advance online publication, 12 June 2015; doi:10.1038/cdd.2015.81
The causes and consequences of topological stress during DNA replication
The faithful replication of sister chromatids is essential for genomic integrity in every cell division. The replication machinery must overcome numerous difficulties in every round of replication, including DNA topological stress. Topological stress arises due to the double-stranded helical nature of DNA. When the strands are pulled apart for replication to occur, the intertwining of the double helix must also be resolved or topological stress will arise. This intrinsic problem is exacerbated by specific chromosomal contexts encountered during DNA replication. The convergence of two replicons during termination, the presence of stable protein-DNA complexes and active transcription can all lead to topological stresses being imposed upon DNA replication. Here we describe how replication forks respond to topological stress by replication fork rotation and fork reversal. We also discuss the genomic contexts where topological stress is likely to occur in eukaryotes, focusing on the contribution of transcription. Finally, we describe how topological stress, and the ways forks respond to it, may contribute to genomic instability in cell
Sustained E2F-Dependent Transcription Is a Key Mechanism to Prevent Replication-Stress-Induced DNA Damage
Recent work established DNA replication stress as a crucial driver of genomic instability and a key event at the onset of cancer. Post-translational modifications play an important role in the cellular response to replication stress by regulating the activity of key components to prevent replication-stress-induced DNA damage. Here, we establish a far greater role for transcriptional control in determining the outcome of replication-stress-induced events than previously suspected. Sustained E2F-dependent transcription is both required and sufficient for many crucial checkpoint functions, including fork stalling, stabilization, and resolution. Importantly, we also find that, in the context of oncogene-induced replication stress, where increased E2F activity is thought to cause replication stress, E2F activity is required to limit levels of DNA damage. These data suggest a model in which cells experiencing oncogene-induced replication stress through deregulation of E2F-dependent transcription become addicted to E2F activity to cope with high levels of replication stress
DNA-activated protein kinase functions in a newly observed S phase checkpoint that links histone mRNA abundance with DNA replication
DNA and histone synthesis are coupled and ongoing replication is required to maintain histone gene expression. Here, we expose S phase–arrested cells to the kinase inhibitors caffeine and LY294002. This uncouples DNA replication from histone messenger RNA (mRNA) abundance, altering the efficiency of replication stress–induced histone mRNA down-regulation. Interference with caffeine-sensitive checkpoint kinases ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) does not affect histone mRNA down- regulation, which indicates that ATR/ATM alone cannot account for such coupling. LY294002 potentiates caffeine's ability to uncouple histone mRNA stabilization from replication only in cells containing functional DNA-activated protein kinase (DNA-PK), which indicates that DNA-PK is the target of LY294002. DNA-PK is activated during replication stress and DNA-PK signaling is enhanced when ATR/ATM signaling is abrogated. Histone mRNA decay does not require Chk1/Chk2. Replication stress induces phosphorylation of UPF1 but not hairpin-binding protein/stem-loop binding protein at S/TQ sites, which are preferred substrate recognition motifs of phosphatidylinositol 3-kinase–like kinases, which indicates that histone mRNA stability may be directly controlled by ATR/ATM- and DNA-PK–mediated phosphorylation of UPF1
Functional compartmentalization of Rad9 and Hus1 reveals diverse assembly of the 9-1-1 complex components during the DNA damage response in Leishmania
The Rad9-Rad1-Hus1 (9-1-1) complex is a key component in the coordination of DNA damage sensing, cell cycle progression and DNA repair pathways in eukaryotic cells. This PCNA-related trimer is loaded onto RPA-coated single stranded DNA and interacts with ATR kinase to mediate effective checkpoint signaling to halt the cell cycle and to promote DNA repair. Beyond these core activities, mounting evidence suggests that a broader range of functions can be provided by 9-1-1 structural diversification. The protozoan parasite Leishmania is an early-branching eukaryote with a remarkably plastic genome, which hints at peculiar genome maintenance mechanisms. Here, we investigated the existence of homologs of the 9-1-1 complex subunits in L. major and found that LmRad9 and LmRad1 associate with chromatin in response to replication stress and form a complex in vivo with LmHus1. Similar to LmHus1, LmRad9 participates in telomere homeostasis and in the response to both replication stress and double strand breaks. However, LmRad9 and LmHus1-deficient cells present markedly opposite phenotypes, which suggest their functional compartmentalization. We show that some of the cellular pool of LmRad9 forms an alternative complex and that some of LmHus1 exists as a monomer. We propose that the diverse assembly of the Leishmania 9-1-1 subunits mediates functional compartmentalization, which has a direct impact on the response to genotoxic stress
The DNA damage response acts as a safeguardagainst harmful DNA–RNA hybrids ofdifferent origins
Despite playing physiological roles in specific situations, DNA–RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA–RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA–RNA hybrid accumulation and a significant increase in hybrid‐dependent DNA breakage. We identify post‐replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways. Thus, spontaneous DNA–RNA hybrids are likely a major source of replication stress, but they can also accumulate and menace genome integrity as a consequence of unrepaired DSBs and post‐replicative ssDNA gaps in normal cells. We show that DNA–RNA hybrid accumulation correlates with increased DNA damage and chromatin compaction marks. Our results suggest that different mechanisms can lead to DNA–RNA hybrids with distinct consequences for replication and DNA dynamics at each cell cycle stage and support the conclusion that DNA–RNA hybrids are a common source of spontaneous DNA damage that remains unsolved under a deficient DDR.European Research Council (ERC2014AdG669898TARLOOP)Worldwide Cancer Research (WCR15-00098
Ataxia-telangiectasia Mutated (ATM)-dependent Activation of ATR Occurs through Phosphorylation of TopBP1 by ATM
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome
- …
