705,563 research outputs found

    The C Terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit

    Get PDF
    Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3′ deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity

    Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation.

    Get PDF
    We have detected DNA binding activity for a synthetic oligonucleotide containing an Sp1 consensus sequence in nuclear extracts from human chondrocytes. Changes in the levels of Sp1 oligonucleotide binding activity were examined in nuclear extracts from freshly isolated human chondrocytes, from chondrocytes that had been cultured under conditions that allowed the maintenance of a chondrocyte-specific phenotype on plastic dishes coated with the hydrogel poly(2-hydroxyethyl methacrylate), and from chondrocytes induced to dedifferentiate into fibroblast-like cells by passage in monolayer culture on plastic substrata. It was observed that Sp1 binding was 2-3-fold greater in nuclear extracts from dedifferentiated chondrocytes than in nuclear extracts from either freshly isolated chondrocytes or from cells cultured in suspension. The Sp1 binding activity was specific, since it was competed by unlabeled Sp1 but not by AP1 or AP2. The addition of a polyclonal antibody against Sp1 to nuclear extracts from freshly isolated chondrocytes or to extracts isolated from chondrocytes cultured in monolayer decreased the binding of Sp1 by approximately 85%. However, when the same experiment was carried out with nuclear extracts prepared from cells cultured on poly(2-hydroxyethyl methacrylate)-coated plates, only a very slight inhibition of Sp1 binding was observed. When fragments of the COL2A1 promoter containing putative Sp1 binding sites amplified by polymerase chain reaction were examined, it was found that the amounts of DNA-protein complex formed with nuclear extracts from dedifferentiated chondrocytes were 2-3-fold greater than the amounts formed with nuclear extracts from freshly isolated chondrocytes or from cells cultured in suspension. Quantitation of DNA binding activity by titration experiments demonstrated that nuclear extracts from fibroblast-like cells contained approximately 2-fold greater Sp-1 specific binding activity than nuclear extracts from chondrocytes. The direct role of Sp1 in type II collagen gene transcription was demonstrated by co-transfection experiments of COL2A1 promoter-CAT constructs in Drosophila Schneider line L2 cells that lack Sp1 homologs. This is the first demonstration of Sp1 binding activity in human chondrocytes and of differences in Sp1 DNA binding activity between differentiated and dedifferentiated chondrocytes

    Structural insights into the autoregulation and cooperativity of the human transcription factor Ets-2

    Get PDF
    Ets-2, like its closely related homologue Ets-1, is a member of the Ets family of DNA binding transcription factors. Both proteins are subject to multiple levels of regulation of their DNA binding and transactivation properties. One such regulatory mechanism is the presence of an autoinhibitory module, which in Ets-1 allosterically inhibits the DNA binding activity. This inhibition can be relieved by interaction with protein partners or cooperative binding to closely separated Ets binding sites in a palindromic arrangement. In this study we describe the 2.5 Å resolution crystal structure of a DNA complex of the Ets-2 Ets domain. The Ets domain crystallized with two distinct species in the asymmetric unit, which closely resemble the autoinhibited and DNA bound forms of Ets-1. This discovery prompted us to re-evaluate the current model for the autoinhibitory mechanism and the structural basis for cooperative DNA binding. In contrast to Ets-1, in which the autoinhibition is caused by a combination of allosteric and steric mechanisms, we were unable to find clear evidence for the allosteric mechanism in Ets-2. We also demonstrated two possibly distinct types of cooperative binding to substrates with Ets binding motifs separated by four and six base pairs and suggest possible molecular mechanisms for this behavior

    Survey of variation in human transcription factors reveals prevalent DNA binding changes

    Full text link
    Published in final edited form as: Science. 2016 Mar 25; 351(6280): 1450–1454. Published online 2016 Mar 24. doi: 10.1126/science.aad2257Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.National Institutes of Health; NHGRI R01 HG003985; P50 HG004233; A*STAR National Science Scholarship; National Science Foundatio

    Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes.

    Get PDF
    OBJECTIVE: The normal structure and function of articular cartilage are the result of a precisely balanced interaction between anabolic and catabolic processes. The transforming growth factor-beta (TGF-beta) family of growth factors generally exerts an anabolic or repair response; in contrast, proinflammatory cytokines such as interleukin 1 beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) exert a strong catabolic effect. Recent evidence has shown that IL-1beta, and TNF-alpha, and the TGF-beta signaling pathways share an antagonistic relationship. The aim of this study was to determine whether the modulation of the response of articular chondrocytes to TGF-beta by IL-1beta or TNF-alpha signaling pathways occurs through regulation of activity and availability of mothers against DPP (Drosophila) human homologue (Smad) proteins. METHODS: Human articular chondrocytes isolated from knee joints from patients with osteoarthritis (OA) or normal bovine chondrocytes were cultured in suspension in poly-(2-hydroxyethyl methacrylate)-coated dishes with either 10% fetal bovine serum media or serum-deprived media 6h before treatment with IL-1beta alone, TNF-alpha alone or IL-1beta followed by TGF-beta. Nuclear extracts were examined by electrophoretic mobility-shift assays (EMSA) for nuclear factor-kappa B (NF-kappaB) and Smad3/4 deoxyribonucleic acid (DNA) binding. Nuclear extracts were also subjected to the TranSignal Protein/DNA array (Panomics, Redwood City, CA) enabling the simultaneous semiquantitative assessment of DNA-binding activity of 54 different transcription factors. Nuclear phospho-Smad2/3 and total Smad7 protein expression in whole cell lysates were studied by Western blot. Cytoplasmic Smad7, type II collagen alpha 1 (COL2A1), aggrecan and SRY-related high mobility group-Box gene 9 (SOX-9) mRNA expression were measured by real-time polymerase chain reaction (PCR). RESULTS: The DNA-binding activity of Smad3/4 in the TranSignal Protein/DNA array was downregulated by TNF-alpha (46%) or IL-1beta treatment (42%). EMSA analysis showed a consistent reduction in Smad3/4 DNA-binding activity in human articular chondrocytes treated with IL-1beta or TNF-alpha. TGF-beta-induced Smad3/4 DNA-binding activity and Smad2/3 phosphorylation were also reduced following pretreatment with IL-1beta in human OA and bovine chondrocytes. Real-time PCR and Western blot analysis showed that IL-1beta partially reversed the TGF-beta stimulation of Smad7 mRNA and protein levels in TGF-beta-treated human OA cells. In contrast, TGF-beta-stimulated COL2A1, aggrecan, and SOX-9 mRNA levels were abrogated by IL-1beta. CONCLUSIONS: IL-1beta or TNF-alpha exerted a suppressive effect on Smad3/4 DNA-binding activity in human articular chondrocytes, as well as on TGF-beta-induced stimulation of Smad3/4 DNA-binding activity and Smad2/3 phosphorylation in human OA and bovine articular chondrocytes. IL-1beta partially reversed the increase in TGF-beta-stimulated Smad7 mRNA or protein levels suggesting that Smad7 may not be involved in the suppression of TGF-beta signaling induced by IL-1beta or TNF-alpha in articular chondrocytes. The balance between the IL-1beta or TNF-alpha and the TGF-beta signaling pathways is crucial for maintenance of articular cartilage homeostasis and its disruption likely plays a substantial role in the pathogenesis of OA

    Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA

    Get PDF
    A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules

    Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA).

    Get PDF
    NAD+-dependent DNA ligases are essential enzymes in bacteria, with the most widely studied of this class of enzymes being LigA from Escherichia coli. NAD+-dependent DNA ligases comprise several discrete structural domains, including a BRCT domain at the C-terminus that is highly-conserved in this group of proteins. The over-expression and purification of various fragments of E. coli LigA allowed the investigation of the different domains in DNA-binding and ligation by this enzyme. Compared to the full-length protein, the deletion of the BRCT domain from LigA reduced in vitro ligation activity by 3-fold and also reduced DNA binding. Using an E. coli strain harbouring a temperature-sensitive mutation of ligA, the over-expression of protein with its BRCT domain deleted enabled growth at the non-permissive temperature. In gel-mobility shift experiments, the isolated BRCT domain bound DNA in a stable manner and to a wider range of DNA molecules compared to full LigA. Thus, the BRCT domain of E. coli LigA can bind DNA, but it is not essential for DNA nick-joining activity in vitro or in vivo

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds
    corecore