1,966 research outputs found

    Advances in machine learning algorithms for financial risk management

    Get PDF
    In this thesis, three novel machine learning techniques are introduced to address distinct yet interrelated challenges involved in financial risk management tasks. These approaches collectively offer a comprehensive strategy, beginning with the precise classification of credit risks, advancing through the nuanced forecasting of financial asset volatility, and ending with the strategic optimisation of financial asset portfolios. Firstly, a Hybrid Dual-Resampling and Cost-Sensitive technique has been proposed to combat the prevalent issue of class imbalance in financial datasets, particularly in credit risk assessment. The key process involves the creation of heuristically balanced datasets to effectively address the problem. It uses a resampling technique based on Gaussian mixture modelling to generate a synthetic minority class from the minority class data and concurrently uses k-means clustering on the majority class. Feature selection is then performed using the Extra Tree Ensemble technique. Subsequently, a cost-sensitive logistic regression model is then applied to predict the probability of default using the heuristically balanced datasets. The results underscore the effectiveness of our proposed technique, with superior performance observed in comparison to other imbalanced preprocessing approaches. This advancement in credit risk classification lays a solid foundation for understanding individual financial behaviours, a crucial first step in the broader context of financial risk management. Building on this foundation, the thesis then explores the forecasting of financial asset volatility, a critical aspect of understanding market dynamics. A novel model that combines a Triple Discriminator Generative Adversarial Network with a continuous wavelet transform is proposed. The proposed model has the ability to decompose volatility time series into signal-like and noise-like frequency components, to allow the separate detection and monitoring of non-stationary volatility data. The network comprises of a wavelet transform component consisting of continuous wavelet transforms and inverse wavelet transform components, an auto-encoder component made up of encoder and decoder networks, and a Generative Adversarial Network consisting of triple Discriminator and Generator networks. The proposed Generative Adversarial Network employs an ensemble of unsupervised loss derived from the Generative Adversarial Network component during training, supervised loss and reconstruction loss as part of its framework. Data from nine financial assets are employed to demonstrate the effectiveness of the proposed model. This approach not only enhances our understanding of market fluctuations but also bridges the gap between individual credit risk assessment and macro-level market analysis. Finally the thesis ends with a novel proposal of a novel technique or Portfolio optimisation. This involves the use of a model-free reinforcement learning strategy for portfolio optimisation using historical Low, High, and Close prices of assets as input with weights of assets as output. A deep Capsules Network is employed to simulate the investment strategy, which involves the reallocation of the different assets to maximise the expected return on investment based on deep reinforcement learning. To provide more learning stability in an online training process, a Markov Differential Sharpe Ratio reward function has been proposed as the reinforcement learning objective function. Additionally, a Multi-Memory Weight Reservoir has also been introduced to facilitate the learning process and optimisation of computed asset weights, helping to sequentially re-balance the portfolio throughout a specified trading period. The use of the insights gained from volatility forecasting into this strategy shows the interconnected nature of the financial markets. Comparative experiments with other models demonstrated that our proposed technique is capable of achieving superior results based on risk-adjusted reward performance measures. In a nut-shell, this thesis not only addresses individual challenges in financial risk management but it also incorporates them into a comprehensive framework; from enhancing the accuracy of credit risk classification, through the improvement and understanding of market volatility, to optimisation of investment strategies. These methodologies collectively show the potential of the use of machine learning to improve financial risk management

    Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review

    Get PDF
    Background: The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high-dimension oncological data in research and development of precision immuno-oncology. Materials and methods: We conducted a systematic literature review of peer-reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real-world and multimodality data. Results: A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real-world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non-small-cell lung cancer (36%), followed by melanoma (16%), while 25% included pan-cancer studies. No prospective study design incorporated AI-based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI-based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. Conclusion: AI-based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI-based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice

    Raman Spectroscopy Techniques for the Detection and Management of Breast Cancer

    Get PDF
    Breast cancer has recently become the most common cancer worldwide, and with increased incidence, there is increased pressure on health services to diagnose and treat many more patients. Mortality and survival rates for this particular disease are better than other cancer types, and part of this is due to the facilitation of early diagnosis provided by screening programmes, including the National Health Service breast screening programme in the UK. Despite the benefits of the programme, some patients undergo negative experiences in the form of false negative mammograms, overdiagnosis and subsequent overtreatment, and even a small number of cancers are induced by the use of ionising radiation. In addition to this, false positive mammograms cause a large number of unnecessary biopsies, which means significant costs, both financially and in terms of clinicians' time, and discourages patients from attending further screening. Improvement in areas of the treatment pathway is also needed. Surgery is usually the first line of treatment for early breast cancer, with breast conserving surgery being the preferred option compared to mastectomy. This type of operation achieves the same outcome as mastectomy - removal of the tumour - while allowing the patient to retain the majority of their normal breast tissue for improved aesthetic and psychological results. Yet, re-excision operations are often required when clear margins are not achieved, i.e. not all of the tumour is removed. This again has implications on cost and time, and increases the risk to the patient through additional surgery. Currently lacking in both the screening and surgical contexts is the ability to discern specific chemicals present in the breast tissue being assessed/removed. Specifically relevant to mammography is the presence of calcifications, the chemistry of which holds information indicative of pathology that cannot be accessed through x-rays. In addition, the chemical composition of breast tumour tissue has been shown to be different to normal tissue in a variety of ways, with one particular difference being a significant increase in water content. Raman spectroscopy is a rapid, non-ionising, non-destructive technique based on light scattering. It has been proven to discern between chemical types of calcification and subtleties within their spectra that indicate the malignancy status of the surrounding tissue, and differentiate between cancerous and normal breast tissue based on the relative water contents. Furthermore, this thesis presents work aimed at exploring deep Raman techniques to probe breast calcifications at depth within tissue, and using a high wavenumber Raman probe to discriminate tumour from normal tissue predominantly via changes in tissue water content. The ability of transmission Raman spectroscopy to detect different masses and distributions of calcified powder inclusions within tissue phantoms was tested, as well as elucidating a signal profile of a similar inclusion through a tissue phantom of clinically relevant thickness. The technique was then applied to the measurement of clinically active samples of bulk breast tissue from informed and consented patients to try to measure calcifications. Ex vivo specimens were also measured with a high wavenumber Raman probe, which found significant differences between tumour and normal tissue, largely due to water content, resulting in a classification model that achieved 77.1% sensitivity and 90.8% specificity. While calcifications were harder to detect in the ex vivo specimens, promising results were still achieved, potentially indicating a much more widespread influence of calcification in breast tissue, and to obtain useful signal from bulk human tissue is encouraging in itself. Consequently, this work demonstrates the potential value of both deep Raman techniques and high wavenumber Raman for future breast screening and tumour margin assessment methods

    Enhancing the forensic comparison process of common trace materials through the development of practical and systematic methods

    Get PDF
    An ongoing advancement in forensic trace evidence has driven the development of new and objective methods for comparing various materials. While many standard guides have been published for use in trace laboratories, different areas require a more comprehensive understanding of error rates and an urgent need for harmonizing methods of examination and interpretation. Two critical areas are the forensic examination of physical fits and the comparison of spectral data, which depend highly on the examiner’s judgment. The long-term goal of this study is to advance and modernize the comparative process of physical fit examinations and spectral interpretation. This goal is fulfilled through several avenues: 1) improvement of quantitative-based methods for various trace materials, 2) scrutiny of the methods through interlaboratory exercises, and 3) addressing fundamental aspects of the discipline using large experimental datasets, computational algorithms, and statistical analysis. A substantial new body of knowledge has been established by analyzing population sets of nearly 4,000 items representative of casework evidence. First, this research identifies material-specific relevant features for duct tapes and automotive polymers. Then, this study develops reporting templates to facilitate thorough and systematic documentation of an analyst’s decision-making process and minimize risks of bias. It also establishes criteria for utilizing a quantitative edge similarity score (ESS) for tapes and automotive polymers that yield relatively high accuracy (85% to 100%) and, notably, no false positives. Finally, the practicality and performance of the ESS method for duct tape physical fits are evaluated by forensic practitioners through two interlaboratory exercises. Across these studies, accuracy using the ESS method ranges between 95-99%, and again no false positives are reported. The practitioners’ feedback demonstrates the method’s potential to assist in training and improve peer verifications. This research also develops and trains computational algorithms to support analysts making decisions on sample comparisons. The automated algorithms in this research show the potential to provide objective and probabilistic support for determining a physical fit and demonstrate comparative accuracy to the analyst. Furthermore, additional models are developed to extract feature edge information from the systematic comparison templates of tapes and textiles to provide insight into the relative importance of each comparison feature. A decision tree model is developed to assist physical fit examinations of duct tapes and textiles and demonstrates comparative performance to the trained analysts. The computational tools also evaluate the suitability of partial sample comparisons that simulate situations where portions of the item are lost or damaged. Finally, an objective approach to interpreting complex spectral data is presented. A comparison metric consisting of spectral angle contrast ratios (SCAR) is used as a model to assess more than 94 different-source and 20 same-source electrical tape backings. The SCAR metric results in a discrimination power of 96% and demonstrates the capacity to capture information on the variability between different-source samples and the variability within same-source samples. Application of the random-forest model allows for the automatic detection of primary differences between samples. The developed threshold could assist analysts with making decisions on the spectral comparison of chemically similar samples. This research provides the forensic science community with novel approaches to comparing materials commonly seen in forensic laboratories. The outcomes of this study are anticipated to offer forensic practitioners new and accessible tools for incorporation into current workflows to facilitate systematic and objective analysis and interpretation of forensic materials and support analysts’ opinions

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Asymptotics of stochastic learning in structured networks

    Get PDF

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    2017 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Eleventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1011/thumbnail.jp

    Seamless Multimodal Biometrics for Continuous Personalised Wellbeing Monitoring

    Full text link
    Artificially intelligent perception is increasingly present in the lives of every one of us. Vehicles are no exception, (...) In the near future, pattern recognition will have an even stronger role in vehicles, as self-driving cars will require automated ways to understand what is happening around (and within) them and act accordingly. (...) This doctoral work focused on advancing in-vehicle sensing through the research of novel computer vision and pattern recognition methodologies for both biometrics and wellbeing monitoring. The main focus has been on electrocardiogram (ECG) biometrics, a trait well-known for its potential for seamless driver monitoring. Major efforts were devoted to achieving improved performance in identification and identity verification in off-the-person scenarios, well-known for increased noise and variability. Here, end-to-end deep learning ECG biometric solutions were proposed and important topics were addressed such as cross-database and long-term performance, waveform relevance through explainability, and interlead conversion. Face biometrics, a natural complement to the ECG in seamless unconstrained scenarios, was also studied in this work. The open challenges of masked face recognition and interpretability in biometrics were tackled in an effort to evolve towards algorithms that are more transparent, trustworthy, and robust to significant occlusions. Within the topic of wellbeing monitoring, improved solutions to multimodal emotion recognition in groups of people and activity/violence recognition in in-vehicle scenarios were proposed. At last, we also proposed a novel way to learn template security within end-to-end models, dismissing additional separate encryption processes, and a self-supervised learning approach tailored to sequential data, in order to ensure data security and optimal performance. (...)Comment: Doctoral thesis presented and approved on the 21st of December 2022 to the University of Port
    corecore