23 research outputs found

    DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models

    Full text link
    The work identifies the first general, explicit, and non-random MIMO encoder-decoder structures that guarantee optimality with respect to the diversity-multiplexing tradeoff (DMT), without employing a computationally expensive maximum-likelihood (ML) receiver. Specifically, the work establishes the DMT optimality of a class of regularized lattice decoders, and more importantly the DMT optimality of their lattice-reduction (LR)-aided linear counterparts. The results hold for all channel statistics, for all channel dimensions, and most interestingly, irrespective of the particular lattice-code applied. As a special case, it is established that the LLL-based LR-aided linear implementation of the MMSE-GDFE lattice decoder facilitates DMT optimal decoding of any lattice code at a worst-case complexity that grows at most linearly in the data rate. This represents a fundamental reduction in the decoding complexity when compared to ML decoding whose complexity is generally exponential in rate. The results' generality lends them applicable to a plethora of pertinent communication scenarios such as quasi-static MIMO, MIMO-OFDM, ISI, cooperative-relaying, and MIMO-ARQ channels, in all of which the DMT optimality of the LR-aided linear decoder is guaranteed. The adopted approach yields insight, and motivates further study, into joint transceiver designs with an improved SNR gap to ML decoding.Comment: 16 pages, 1 figure (3 subfigures), submitted to the IEEE Transactions on Information Theor

    An Improved LR-aided K-Best Algorithm for MIMO Detection

    Full text link
    Recently, lattice reduction (LR) technique has caught great attention for multi-input multi-output (MIMO) receiver because of its low complexity and high performance. However, when the number of antennas is large, LR-aided linear detectors and successive interference cancellation (SIC) detectors still exhibit considerable performance gap to the optimal maximum likelihood detector (MLD). To enhance the performance of the LR-aided detectors, the LR-aided K-best algorithm was developed at the cost of the extra complexity on the order O(Nt2K+NtK2)\mathcal{O}(N_t^2 K + N_t K^2), where NtN_t is the number of transmit antennas and KK is the number of candidates. In this paper, we develop an LR-aided K-best algorithm with lower complexity by exploiting a priority queue. With the aid of the priority queue, our analysis shows that the complexity of the LR-aided K-best algorithm can be further reduced to O(Nt2K+NtKlog2(K))\mathcal{O}(N_t^2 K + N_t K {\rm log}_2(K)). The low complexity of the proposed LR-aided K-best algorithm allows us to perform the algorithm for large MIMO systems (e.g., 50x50 MIMO systems) with large candidate sizes. Simulations show that as the number of antennas increases, the error performance approaches that of AWGN channel.Comment: 5 pages, 4 figures, 1 table, conferenc
    corecore