333,529 research outputs found

    Hydrogen-enhanced local plasticity in aluminum: an ab initio study

    Full text link
    Dislocation core properties of Al with and without H impurities are studied using the Peierls-Nabarro model with parameters determined by ab initio calculations. We find that H not only facilitates dislocation emission from the crack tip but also enhances dislocation mobility dramatically, leading to macroscopically softening and thinning of the material ahead of the crack tip. We observe strong binding between H and dislocation cores, with the binding energy depending on dislocation character. This dependence can directly affect the mechanical properties of Al by inhibiting dislocation cross-slip and developing slip planarity.Comment: 4 pages, 3 figure

    Chiral anomaly in Dirac semimetals due to dislocations

    Get PDF
    The dislocation in Dirac semimetal carries an emergent magnetic flux parallel to the dislocation axis. We show that due to the emergent magnetic field the dislocation accommodates a single fermion massless mode of the corresponding low-energy one-particle Hamiltonian. The mode is propagating along the dislocation with its spin directed parallel to the dislocation axis. In agreement with the chiral anomaly observed in Dirac semimetals, an external electric field results in the spectral flow of the one-particle Hamiltonian, in pumping of the fermionic quasiparticles out from the vacuum, and in creating a nonzero axial (chiral) charge in the vicinity of the dislocation.Comment: 21 pages, 3 figure

    Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model

    Full text link
    Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f21/f^2 at high frequencies ff. The probability distribution of number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of defects alternate at irregular times with high population of defects. We propose a simple stochastic model of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density fluctuations as a function of shear rate

    Mobility of Dislocations in Aluminum

    Get PDF
    The velocities of individual dislocations of edge and mixed types in pure aluminum single crystals were determined as a function of applied‐resolved shear stress and temperature. The dislocation velocities were determined from measurements of the displacements of individual dislocations produced by stress pulses of known duration. The Berg‐Barrett x‐ray technique was employed to observe the dislocations, and stress pulses of 15 to 108 μsec duration were applied by propagating torsional waves along the axes of [111]‐oriented cylindrical crystals. Resolved shear stresses up to 16×10^6 dynes∕cm^2 were applied at temperatures ranging from −150° to +70°C, and dislocation velocities were found to vary from 10 to 2800 cm∕sec over these ranges of stress and temperature. The experimental conditions were such that the dislocation velocities were not significantly influenced by impurities, dislocation curvature, dislocation‐dislocation interactions, or long‐range internal stress fields in the crystals. The velocity of dislocations is found to be linearly proportional to the applied‐resolved shear stress, and to decrease with increasing temperature. Qualitative comparison of these results with existing theories leads to the conclusion that the mobility of individual dislocations in pure aluminum is governed by dislocation‐phonon interactions. The phonon‐viscosity theory of dislocation mobility can be brought into agreement with the experimental results by reasonable choices of the values of certain constants appearing in the theory

    Dislocation core properties of \beta-tin: A first-principles study

    Full text link
    Dislocation core properties of tin (\beta-Sn) were investigated using the semi-discrete variational Peierls-Nabarro model (SVPN). The SVPN model, which connects the continuum elasticity treatment of the long-range strain field around a dislocation with an approximate treatment of the dislocation core, was employed to calculate various core properties, including the core energetics, widths, and Peierls stresses for different dislocation structures. The role of core energetics and properties on dislocation character and subsequent slip behavior in \beta-Sn was investigated. For instance, this work shows that a widely spread dislocation core on the {110} plane as compared to dislocations on the {100} and {101} planes. Physically, the narrowing or widening of the core will significantly affect the mobility of dislocations as the Peierls stress is exponentially related to the dislocation core width in \beta-Sn. In general, the Peierls stress for the screw dislocation was found to be orders of magnitude higher than the edge dislocation, i.e., the more the edge component of a mixed dislocation, the greater the dislocation mobility (lower the Peierls stress). The largest Peierls stress observed was 365 MPa for the dislocation on the {101} plane. Furthermore, from the density plot, we see a double peak for the 0deg (screw) and 30deg dislocations which suggests the dissociation of dislocations along these planes. Thus, for the {101} slip system, we observed dislocation dissociation into three partials with metastable states. Overall, this work provides qualitative insights that aid in understanding the plastic deformation in \beta-Sn

    Discrete dislocation dynamics simulations of dislocation-θ\theta' precipitate interaction in Al-Cu alloys

    Full text link
    The mechanisms of dislocation/precipitate interaction were studied by means of discrete dislocation dynamics within a multiscale approach. Simulations were carried out using the discrete continuous method in combination with a fast Fourier transform solver to compute the mechanical fields. The original simulation strategy was modified to include straight dislocation segments by means of the field dislocation mechanics method and was applied to simulate the interaction of an edge dislocation with a θ\theta' precipitate in an Al-Cu alloy. It was found that the elastic mismatch has a negligible influence on the dislocation/precipitate interaction in the Al-Cu system. Moreover, the influence of the precipitate aspect ratio and orientation was reasonably well captured by the simple Orowan model in the absence of the stress-free transformation strain. Nevertheless, the introduction of the stress-free transformation strain led to dramatic changes in the dislocation/precipitate interaction and in the critical resolved shear stress to overcome the precipitate, particularly in the case of precipitates with small aspect ratio. The new multiscale approach to study the dislocation/precipitate interactions opens the possibility to obtain quantitative estimations of the strengthening provided by precipitates in metallic alloys taking into account the microstructural details

    Edge dislocations in crystal structures considered as traveling waves of discrete models

    Get PDF
    The static stress needed to depin a 2D edge dislocation, the lower dynamic stress needed to keep it moving, its velocity and displacement vector profile are calculated from first principles. We use a simplified discrete model whose far field distortion tensor decays algebraically with distance as in the usual elasticity. An analytical description of dislocation depinning in the strongly overdamped case (including the effect of fluctuations) is also given. A set of NN parallel edge dislocations whose centers are far from each other can depin a given one provided N=O(L)N=O(L), where LL is the average inter-dislocation distance divided by the Burgers vector of a single dislocation. Then a limiting dislocation density can be defined and calculated in simple cases.Comment: 10 pages, 3 eps figures, Revtex 4. Final version, corrected minor error
    corecore