603,232 research outputs found

    A Sparse and High-Order Accurate Line-Based Discontinuous Galerkin Method for Unstructured Meshes

    Full text link
    We present a new line-based discontinuous Galerkin (DG) discretization scheme for first- and second-order systems of partial differential equations. The scheme is based on fully unstructured meshes of quadrilateral or hexahedral elements, and it is closely related to the standard nodal DG scheme as well as several of its variants such as the collocation-based DG spectral element method (DGSEM) or the spectral difference (SD) method. However, our motivation is to maximize the sparsity of the Jacobian matrices, since this directly translates into higher performance in particular for implicit solvers, while maintaining many of the good properties of the DG scheme. To achieve this, our scheme is based on applying one-dimensional DG solvers along each coordinate direction in a reference element. This reduces the number of connectivities drastically, since the scheme only connects each node to a line of nodes along each direction, as opposed to the standard DG method which connects all nodes inside the element and many nodes in the neighboring ones. The resulting scheme is similar to a collocation scheme, but it uses fully consistent integration along each 1-D coordinate direction which results in different properties for nonlinear problems and curved elements. Also, the scheme uses solution points along each element face, which further reduces the number of connections with the neighboring elements. Second-order terms are handled by an LDG-type approach, with an upwind/downwind flux function based on a switch function at each element face. We demonstrate the accuracy of the method and compare it to the standard nodal DG method for problems including Poisson's equation, Euler's equations of gas dynamics, and both the steady-state and the transient compressible Navier-Stokes equations.Comment: Minor changes: Reviewer suggestions, typos, et

    A discontinuous Galerkin method for solving the fluid and MHD equations in astrophysical simulations

    Full text link
    A discontinuous Galerkin (DG) method suitable for large-scale astrophysical simulations on Cartesian meshes as well as arbitrary static and moving Voronoi meshes is presented. Most major astrophysical fluid dynamics codes use a finite volume (FV) approach. We demonstrate that the DG technique offers distinct advantages over FV formulations on both static and moving meshes. The DG method is also easily generalized to higher than second-order accuracy without requiring the use of extended stencils to estimate derivatives (thereby making the scheme highly parallelizable). We implement the technique in the AREPO code for solving the fluid and the magnetohydrodynamic (MHD) equations. By examining various test problems, we show that our new formulation provides improved accuracy over FV approaches of the same order, and reduces post-shock oscillations and artificial diffusion of angular momentum. In addition, the DG method makes it possible to represent magnetic fields in a locally divergence-free way, improving the stability of MHD simulations and moderating global divergence errors, and is a viable alternative for solving the MHD equations on meshes where Constrained-Transport (CT) cannot be applied. We find that the DG procedure on a moving mesh is more sensitive to the choice of slope limiter than is its FV method counterpart. Therefore, future work to improve the performance of the DG scheme even further will likely involve the design of optimal slope limiters. As presently constructed, our technique offers the potential of improved accuracy in astrophysical simulations using the moving mesh AREPO code as well as those employing adaptive mesh refinement (AMR).Comment: Updated figure captions. 17 pages, 15 figure
    corecore