231,658 research outputs found

    First-principle study of paraelectric and ferroelectric CsH2_2PO4_4 including dispersion forces: stability and related vibrational, dielectric and elastic properties

    Full text link
    Using density functional theory (DFT) and density functional perturbation theory (DFPT), we investigate the stability and response functions of CsH2_2PO4_4, a ferroelectric material at low temperature. This material cannot be described properly by the usual (semi-)local approximations within DFT. The long-range e^--e^- correlation needs to be properly taken into account, using, for instance, Grimme's DFT-D methods, as investigated in this work. We find that DFT-D3(BJ) performs the best for the members of the dihydrogenated alkali phosphate family (KH2_2PO4_4, RbH2_2PO4_4, CsH2_2PO4_4), leading to experimental lattice parameters reproduced with an average deviation of 0.5 %. With these DFT-D methods, the structural, dielectric, vibrational and mechanical properties of CsH2_2PO4_4 are globally in excellent agreement with the available experiments (<< 2% MAPE for Raman-active phonons). Our study suggests the possible existence of a new low-temperature phase for CsH2_2PO4_4, not yet reported experimentally. Finally, we report the implementation of DFT-D contributions to elastic constants within DFPT.Comment: This paper was published in Physical Review B the 25 January 2017 (21 pages, 4 figures

    The education of Walter Kohn and the creation of density functional theory

    Full text link
    The theoretical solid-state physicist Walter Kohn was awarded one-half of the 1998 Nobel Prize in Chemistry for his mid-1960's creation of an approach to the many-particle problem in quantum mechanics called density functional theory (DFT). In its exact form, DFT establishes that the total charge density of any system of electrons and nuclei provides all the information needed for a complete description of that system. This was a breakthrough for the study of atoms, molecules, gases, liquids, and solids. Before DFT, it was thought that only the vastly more complicated many-electron wave function was needed for a complete description of such systems. Today, fifty years after its introduction, DFT (in one of its approximate forms) is the method of choice used by most scientists to calculate the physical properties of materials of all kinds. In this paper, I present a biographical essay of Kohn's educational experiences and professional career up to and including the creation of DFT

    Efficacy of the DFT+U formalism for modeling hole polarons in perovskite oxides

    Full text link
    We investigate the formation of self-trapped holes (STH) in three prototypical perovskites (SrTiO3, BaTiO3, PbTiO3) using a combination of density functional theory (DFT) calculations with local potentials and hybrid functionals. First we construct a local correction potential for polaronic configurations in SrTiO3 that is applied via the DFT+U method and matches the forces from hybrid calculations. We then use the DFT+U potential to search the configuration space and locate the lowest energy STH configuration. It is demonstrated that both the DFT+U potential and the hybrid functional yield a piece-wise linear dependence of the total energy on the occupation of the STH level suggesting that self-interaction effects have been properly removed. The DFT+U model is found to be transferable to BaTiO3 and PbTiO3, and formation energies from DFT+U and hybrid calculations are in close agreement for all three materials. STH formation is found to be energetically favorable in SrTiO3 and BaTiO3 but not in PbTiO3, which can be rationalized by considering the alignment of the valence band edges on an absolute energy scale. In the case of PbTiO3 the strong coupling between Pb 6s and O 2p states lifts the valence band minimum (VBM) compared to SrTiO3 and BaTiO3. This reduces the separation between VBM and STH level and renders the STH configuration metastable with respect to delocalization (band hole state). We expect that the present approach can be adapted to study STH formation also oxides with different crystal structures and chemical composition.Comment: 7 pages, 6 figure

    Density functional theory and DFT+U study of transition metal porphines adsorbed on Au(111) surfaces and effects of applied electric fields

    Full text link
    We apply Density Functional Theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an eV. The DFT+U technique, parameterized to B3LYP predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP, and ~ 0.1 Angstrom, changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first row transition metal ion complexes in a condensed-matter setting.Comment: 14 pages, 6 figure
    corecore