50 research outputs found

    Photochemistry of aromatic hydrocarbons: implications for ozone and secondary organic aerosol formation

    Get PDF
    Aromatic hydrocarbons constitute an important fraction (~20%) of total volatile organic compounds (VOCs) in the urban atmosphere. A better understanding of the aromatic oxidation and its association in urban and regional ozone and organic aerosol formation is essential to assess the urban air pollution. This dissertation consists of two parts: (1) theoretical investigation of the toluene oxidation initiated by OH radical using quantum chemical and kinetic calculations to understand the mechanism of O3 and SOA precursors and (2) experimental investigation of atmospheric new particle formation from aromatic acids. Density functional theory (DFT) and ab initio multiconfigurational calculations have been performed to investigate the OH-toluene reaction. The branching ratios of OH addition to ortho, para, meta, and ipso positions are predicted to be 0.52, 0.34, 0.11, and 0.03, respectively, significantly different from a recent theoretical study of the same reaction system. Aromatic peroxy radicals arising from initial OH and subsequent O2 additions to the toluene ring are shown to cyclize to form bicyclic radicals rather than undergoing reaction with NO under atmospheric conditions.Isomerization of bicyclic radicals to more stable epoxide radicals possesses significantly higher barriers and hence has slower rates than O2 addition to form bicyclic peroxy radicals. At each OH attachment site, only one isomeric pathway via the bicyclic peroxy radical is accessible to lead to ring cleavage. Decomposition of the bicyclic alkoxy radicals leads primarily to formation of glyoxal and methyl glyoxal along with other dicarbonyl compounds. Atmospheric aerosols often contain a considerable fraction of organic matter, but the role of organic compounds in new nanometer-sized particle formation is highly uncertain. Laboratory experiments show that nucleation of sulfuric acid is considerably enhanced in the presence of aromatic acids. Theoretical calculations identify the formation of an unusually stable aromatic acid-sulfuric acid complex, which likely leads to a reduced nucleation barrier. The results imply that the interaction between organic and sulfuric acids promotes efficient formation of organic and sulfate aerosols in the polluted atmosphere because of emissions from burning of fossil fuels, which strongly impact human health and global climate

    A reinvestigation of the deceptively simple reaction of toluene with OH, and the fate of the benzyl radical : a combined thermodynamic and kinetic study on the competition between OH-addition and H-abstraction reactions

    Get PDF
    This work reports density functional and composite model chemistry calculations performed on the reactions of toluene with the hydroxyl radical. Both the experimentally observed H-abstraction from the methyl group and possible OH additions to the phenyl ring were investigated. Reaction enthalpies and barrier heights suggest that H-abstraction is more favorable than OH-addition to the ring. The calculated reaction rates at room temperature and the radical intermediate product fractions support this view. At first sight, this might seem to disagree with the fact that, under most experimental conditions, cresols are observed in a larger concentration than benzaldehyde. Since the accepted mechanism for benzaldehyde formation involves H-abstraction, a contradiction arises that calls for a more elaborate explanation. In this first exploratory study, we provide evidence that support the preference of H-abstraction over OH addition and present an alternative mechanism which shows that cresols can be actually produced also through H-abstraction and not only from OH-addition, thus justifying the larger proportion of cresols than benzaldehyde among the products

    Kinetics and decomposition mechanisms of selected Nitrogen-containing species

    Get PDF
    This thesis calculates the rate of hydrogen abstraction reactions and the mechanisms of nitrogen oxides (NOx and N2O) reduction, especially those relevant to the oxidation and pyrolysis of nitrogen-rich fuels such as biomass. The dissertation firstly focuses on the interaction of hydrocarbons with the amidogen radical (NH2) and nitrogen dioxide (NO2), before analysing in detail the decomposition of ammonium nitrate (AN) both in gas and liquid media. In addition to this, the moderation of nitrous oxide (N2O) and nitrogen oxides (NOx) via their reaction with a biomass surrogate of catechol was also studied. The underlying aims of the study were to report the mechanisms and kinetic factors controlling the interaction of NH2 and NO2 radicals with a wide array of hydrocarbons, then to map out the prominent reaction pathways prevailing in the decomposition of ammonium nitrate (AN) and conversion of N2O into N2 via dissociative adsorption onto a catechol moiety. Accurate quantum-mechanical calculations probed the hydrogen abstraction reactions from small aliphatic and aromatic hydrocarbons by NH2 and NO2 radicals. Reaction and activation energies for all plausible hydrogen abstraction channels were executed with the accurate chemistry model of CBS-QB3. Reaction rate parameters were obtained based on conventional transition-state theory, accounting for a plausible contribution from tunnelling effects and treating internal rotations as hindered rotors. We established that a linear correlation existed between the strength of the C-H bonds (i.e., primary, secondary, vinylic, and benzylic) and the activation energies for H abstraction channels operated by NH2 and NO2 radicals. Moreover, the meta-hybrid Density Functional Theory (DFT) of M05-2X/6-311+G(d,p) levels elucidated viable systematic conversion routes of N2O into N2 via interaction with a catechol molecule. Two theoretical methodologies were applied to study thermal decomposition of AN in gas and liquid phases. A continuum solvation model density-polarisable continuum model (SMD-PCM) expounds the catalysing effect of water on AN thermal cracking. The solvation model systematically predicts lower activation energies when contrasted with analogous gas phase values. An important part of the thesis investigates the potential of biomass constituents for the so-called selective non-catalytic reduction of NOx into nitrogen molecules. The laboratory-scale rig offers a continuous supply of carrier and reaction gases which run through a tubular reactor coupled with FTIR spectroscopy, micro-GC and a chemiluminescence NOx analyser. The consumption of the biomass surrogate (catechol) is analysed using a triple quadruple mass spectrometer (QQQ-MS) at temperatures starting from 400 °C. Fine-tuning of experimental conditions encompasses residence time and inlet reactant mixing ratios. Above 800 °C, we report more than 80 % NOx reduction efficiency. In summary, our findings throughout the thesis present previously unreported data and new insights pertinent to the combustion chemistry of several selected N-species

    Shifty protons and wandering electrons

    Get PDF
    Møller-Plesset second order perturbation theory (MP2) is one of the most widely used electron correlation methods in computational chemistry. The rising cost of computing demands that computational chemists develop novel cost-saving strategies to reduce the time and energy associated with the most widely used methods in the field. Multiple studies are presented evaluating the effects of two particular strategies (dynamic voltage and frequency scaling and oversubscription) when used with specific MP2 algorithms. Additionally, a collection of experimental collaborations is presented covering a wide range of chemical topics, including organic synthesis, stereochemistry of 1,2-masked diols, nuclear magnetic resonance characterization of silicon nanocrystals, and inorganic catalysis involving cobalt

    The Investigation of the Low Temperature Combustion of Mesitylene and Tert-Amyl Methyl Ether by Synchrotron Photoionization Mass Spectrometry

    Get PDF
    This thesis describes the combustion experiments performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) located at the Lawrence Berkeley National Laboratories (LBNL). The need for renewable fuel sources, the need for the study of their combustion in the contexts of homogenous charge combustion ignition (HCCI) engines can be found in Chapter 1. The components of the experimental set-up used throughout this thesis—time-of-flight mass spectrometer, Excimer laser, vacuum pumps and other components—and the components of ALS responsible in synchrotron radiation generation and processing—the linear accelerator, the booster ring, insertion devices, gas filters and monochromator are explained in Chapter 2. The data analysis method and the computational method used in the data analysis are expounded in Chapter 3. There are two combustion systems being investigated in this thesis. Mesitylene, an aromatic fuel additive, is proposed to be jet fuel, and its combustion is described in Chapter 4. Semi-biorenewable tert-amyl methyl ether (TAME) is studied in Chapter 5. Thermodynamic calculations, proposed mechanism, product identification and branching fractions are included in the analysis of the combustion of all these molecules

    The Investigation of the Chlorine Initiated Oxidation of 2-Phenylethanol and Stability of Superalkali Lithium Substituted Silyls.

    Get PDF
    This thesis investigates the combustion potential of 2-phenylethanol and the superalkali properties of small lithium substituted silicon compounds. All combustion experiments were performed at the Advanced Light Source of Lawrence Berkeley National Laboratory at the Chemical Dynamics Beamline 9.0.2. The chlorine initiated oxidation of 2PE was investigated at 298 and 550 K using a multiplex photoionization mass spectrometer, coupled with the tunable vacuum ultraviolet radiation. Reaction products were identified using kinetic time traces and photoionization spectra. Additionally, the stability of small superalkali silicon-lithium compounds has also been investigated. All structures and energetics were calculated using the CBS-QB3 composite method. The first chapter of this thesis discusses atmospheric pollution, engine technology, biofuels and other alternative energy sources. The ALS, the experimental apparatus and their components are explained throughout Chapter 2. Chapter 3 explains the theory behind the computational methodology, as well as how to analyze the results obtained from the experimental apparatus. Chapter 4 evaluates the chlorine initiated oxidation of 2-phenylethanol. Chapter 5 investigates the superalkali properties of small silicon-lithium compounds

    Pyridazinediones and amino acid receptors: theoretical studies, design, synthesis, and evaluation of novel analogues

    Get PDF
    http://www.pharmacol.usyd.edu.au/thesis This thesis is primarily concerned with a class of chemical compounds known as pyridazinediones, being 6-membered aromatic rings containing two adjacent nitrogen atoms (pyridazine), doubly substituted with oxygen. In particular, the work focuses on pyridazine-3,6-diones, derivatives of maleic hydrazide (1). Understanding of the chemistry of these compounds is extended, using theoretical and synthetic techniques. This thesis is also concerned with two very important classes of receptors which bind amino acids in the brain: firstly, the inhibitory GABA receptor, which binds g-aminobutyric acid (GABA) (2) in vivo, and for which muscimol (3) is an agonist of the GABAA subclass; secondly, Excitatory Amino Acid (EAA) receptors, which bind glutamate (4) in vivo, and in particular the AMPA subclass, for which (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) (5) is an agonist. The connection between pyridazinediones and amino acid receptors is the design, synthesis, and evaluation of structures based on pyridazinediones as potential GABA and EAA receptor ligands. Techniques of theoretical chemistry, molecular modelling, synthetic chemistry, and in vitro pharmacology are used to explore pyridazine-3,6-dione derivatives as ligands

    Pyridazinediones and amino acid receptors: theoretical studies, design, synthesis, and evaluation of novel analogues

    Get PDF
    http://www.pharmacol.usyd.edu.au/thesis This thesis is primarily concerned with a class of chemical compounds known as pyridazinediones, being 6-membered aromatic rings containing two adjacent nitrogen atoms (pyridazine), doubly substituted with oxygen. In particular, the work focuses on pyridazine-3,6-diones, derivatives of maleic hydrazide (1). Understanding of the chemistry of these compounds is extended, using theoretical and synthetic techniques. This thesis is also concerned with two very important classes of receptors which bind amino acids in the brain: firstly, the inhibitory GABA receptor, which binds g-aminobutyric acid (GABA) (2) in vivo, and for which muscimol (3) is an agonist of the GABAA subclass; secondly, Excitatory Amino Acid (EAA) receptors, which bind glutamate (4) in vivo, and in particular the AMPA subclass, for which (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) (5) is an agonist. The connection between pyridazinediones and amino acid receptors is the design, synthesis, and evaluation of structures based on pyridazinediones as potential GABA and EAA receptor ligands. Techniques of theoretical chemistry, molecular modelling, synthetic chemistry, and in vitro pharmacology are used to explore pyridazine-3,6-dione derivatives as ligands
    corecore