978 research outputs found

    Structures with high number density of carbon nanotubes and 3-dimensional distribution

    Get PDF
    A composite is described having a three dimensional distribution of carbon nanotubes. The critical aspect of such composites is a nonwoven network of randomly oriented fibers connected at their junctions to afford macropores in the spaces between the fibers. A variety of fibers may be employed, including metallic fibers, and especially nickel fibers. The composite has quite desirable properties for cold field electron emission applications, such as a relatively low turn-on electric field, high electric field enhancement factors, and high current densities. The composites of this invention also show favorable properties for other an electrode applications. Several methods, which also have general application in carbon nanotube production, of preparing these composites are described and employ a liquid feedstock of oxyhydrocarbons as carbon nanotube precursors

    Acrylic purification and coatings

    Full text link
    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).Comment: Proceedings of Topical Workshop on Low Radioactivity Techniques (LRT 2010), SNOLAB, Sudbury, Canada, Aug 28-29, 201

    Raman spectroscopy characterization of diamond films on steel substrates with titanium carbide arc-plated interlayer

    Get PDF
    Diamond chemical vapour deposition (CVD) on steel represents a difficult task. The major problem is represented by large diffusion of carbon into steel at CVD temperatures. This leads to very low diamond nucleation and degradation of steel microstructure and properties. Recent work [R. Polini, F. Pighetti Mantini, M. Braic, M. Amar, W Ahmed, H. Taylor, Thin Solid Films 494 (2006) 116] demonstrated that well-adherent diamond films can be grown on high-speed steels by using a TiC interlayer deposited by the PVD-arc technique. The resulting multilayer (TiC/ diamond) coating had a rough surface morphology due to the presence of droplets formed at the substrate surface during the reactive evaporation of TiC. In this work, we first present an extensive Raman investigation of 2 mu m, 4 mu m and 6 mu m thick diamond films deposited by hot filament CVD on TiC interlayers obtained by the PVD-arc technique. The stress state of the diamond was dependent on both the films thickness and the spatial position of the coating on the substrate. In fact, on the top of TiC droplets, the stress state of the diamond was much lower than that of diamond in flatter substrate areas. These results showed that diamond films deposited on rough TiC interlayers exhibited a wide distribution of stress values and that very large compressive stress exists in the diamond film grown on flat regions of steel substrates with a TiC interlayer. Diamond films could accommodate stresses as large as 10 GPa without delamination

    Diamond based nanostructures for electronic applications

    Get PDF
    Research in the area of CVD diamond thin films has increased significantly during the last decades to the point where single crystal diamond is now commercially available. The remarkable properties of diamond including its extreme hardness, low coefficient of friction, chemical inertness, high thermal conductivity, transparency and semiconducting properties make it attractive for a number of applications, among which electronic devices is one of the key areas. A detailed knowledge of electrical properties of diamond films is therefore critical. This thesis describes (1) a Hall effect study of highly boron-doped (111) diamond films (2) a Hall effect and impedance spectroscopic study of boron δ-doped diamond structures and (3) the synthesis of carbon nanotubes on single crystal diamond. Systematic investigations have been carried out on single crystal, boron-doped (111) diamond films. The influence of ultra pure gases, doping concentration and temperature on carrier transport are discussed in detail. A comprehensive study on boron δ-doped diamond films is also performed; Hall effect and impedance spectroscopy are used to evaluate these films, providing valuable insight into the complex carrier transport mechanisms occurring in these structures. The influence of temperature on carrier mobility and the free carrier density are discussed. This is allied with valuable information gained from impedance spectroscopy, where the presence of multiple semicircular responses (conduction pathways), modelled using a RC parallel circuit, yields data which leads to a greater understanding on the influence of the interface between the boron δ-doped layer and the surrounding intrinsic diamond layers. These semicircular responses are thus attributed to different crystalline regions in these structures, namely the boron δ -doped layer and the interfacial regions surrounding δ-layer. The influence of this interface region on the structures overall conductivity is discussed. Finally the synthesis of carbon nanotubes (CNTs) on single crystal diamond is reported for the first time. Scanning electron microscopy combined with Raman spectroscopy is used to understand the influence of temperature and differing growth gas mixtures on the yield and crystallinity of these as-grown CNTs
    corecore