2,527,111 research outputs found

    Soil degradation: a threat to developing-country food security by 2020?

    Get PDF
    Global population in the year 2020 will be a third higher than in 1995, but demand for food and fiber will rise by an even higher proportion, as incomes grow, diets diversify, and urbanization accelerates. However this demand is met, population and farming pressure on land resources will intensify greatly. There is growing concern in some quarters that a decline in long-term soil productivity is already seriously limiting food production in the developing world, and that the problem is getting worse. Sarah Sherr first focuses on the magnitude and effects of soil degradation. She then addresses soil degradation in the future and ends her brief with policy and research priorities.Soil degradation Developing countries., Food security Developing countries.,

    Statistical modeling, parameter estimation and measurement planning for PV degradation

    Get PDF
    Photovoltaics (PV) degradation is a key consideration during PV performance evaluation. Accurately predicting power delivery over the course of lifetime of PV is vital to manufacturers and system owners. With many systems exceeding 20 years of operation worldwide, degradation rates have been reported abundantly in the recent years. PV degradation is a complex function of a variety of factors, including but not limited to climate, manufacturer, technology and installation skill. As a result, it is difficult to determine degradation rate by analytical modeling; it has to be measured. As one set of degradation measurements based on a single sample cannot represent the population nor be used to estimate the true degradation of a particular PV technology, repeated measures through multiple samples are essential. In this chapter, linear mixed effects model (LMM) is introduced to analyze longitudinal degradation data. The framework herein introduced aims to address three issues: 1) how to model the difference in degradation observed in PV modules/systems of a same technology that are installed at a shared location; 2) how to estimate the degradation rate and quantiles based on the data; and 3) how to effectively and efficiently plan degradation measurements

    The Thermal degradation of Bisphenol A Polycarbonate in Air

    Get PDF
    The thermal degradation of polycarbonate in air was studied as a function of mass loss using TGA/FTIR, GC/MS and LC/MS. In the main degradation region, 480–560 °C, the assigned structures of smaller molecules and linear molecules that evolved in air were very similar to those obtained from the degradation in nitrogen; the degradation of polycarbonate follows chain scission of the isopropylidene linkage, in agreement with the bond dissociation energies, and hydrolysis/alcoholysis of carbonate linkage. Compared to the degradation in nitrogen, some differences were observed primarily in the beginning stage of degradation. Oxygen may facilitate branching as well as radical formation via the formation of peroxides. These peroxides undergo further dissociations and combinations, producing aldehydes, ketones and some branched structures, mainly in the beginning stage of degradation. It is speculated that the intermediate char formed in the beginning due to branching reactions of peroxide interferes with the mass transfer through the surface of degrading polycarbonate in the main degradation. Thus, even though the mass loss begins earlier in air, a slower mass loss rate is observed

    Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy

    Get PDF
    Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin–proteasome system (UPS) for widespread degradation of outer membrane proteins. This is evidenced by an increase in K48-linked polyubiquitin on mitochondria, recruitment of the 26S proteasome and rapid degradation of multiple outer membrane proteins. The degradation of proteins by the UPS occurs independently of the autophagy pathway, and inhibition of the 26S proteasome completely abrogates Parkin-mediated mitophagy in HeLa, SH-SY5Y and mouse cells. Although the mitofusins Mfn1 and Mfn2 are rapid degradation targets of Parkin, we find that degradation of additional targets is essential for mitophagy. These results indicate that remodeling of the mitochondrial outer membrane proteome is important for mitophagy, and reveal a causal link between the UPS and autophagy, the major pathways for degradation of intracellular substrates

    Optical transmittance degradation in tapered fibers

    Get PDF
    We investigated the cause of optical transmittance degradation in tapered fibers. Degradation commences immediately after fabrication and it eventually reduces the transmittance to almost zero. It is a major problem that limits applications of tapered fibers. We systematically investigated the effect of the dust-particle density and the humidity on the degradation dynamics. The results clearly show that the degradation is mostly due to dust particles and that it is not related to the humidity. In a dust free environment it is possible to preserve the transmittance with a degradation of less than the noise (+/- ?0.02) over 1 week

    Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon

    Get PDF
    Peru has the fourth largest area of peatlands in the Tropics. Its most representative land cover on peat is a Mauritia flexuosa dominated palm swamp (thereafter called dense PS), which has been under human pressure over decades due to the high demand for the M. flexuosa fruit often collected by cutting down the entire palm. Degradation of these carbon dense forests can substantially affect emissions of greenhouse gases and contribute to climate change. The first objective of this research was to assess the impact of dense PS degradation on forest structure and biomass carbon stocks. The second one was to explore the potential of mapping the distribution of dense PS with different degradation levels using remote sensing data and methods. Biomass stocks were measured in 0.25 ha plots established in areas of dense PS with low (n = 2 plots), medium (n = 2) and high degradation (n = 4). We combined field and remote sensing data from the satellites Landsat TM and ALOS/PALSAR to discriminate between areas typifying dense PS with low, medium and high degradation and terra firme, restinga and mixed PS (not M. flexuosa dominated) forests. For this we used a Random Forest machine learning classification algorithm. Results suggest a shift in forest composition from palm to woody tree dominated forest following degradation. We also found that human intervention in dense PS translates into significant reductions in tree carbon stocks with initial (above and below-ground) biomass stocks (135.4 ± 4.8 Mg C ha−1) decreased by 11 and 17% following medium and high degradation. The remote sensing analysis indicates a high separability between dense PS with low degradation from all other categories. Dense PS with medium and high degradation were highly separable from most categories except for restinga forests and mixed PS. Results also showed that data from both active and passive remote sensing sensors are important for the mapping of dense PS degradation. Overall land cover classification accuracy was high (91%). Results from this pilot analysis are encouraging to further explore the use of remote sensing data and methods for monitoring dense PS degradation at broader scales in the Peruvian Amazon. Providing precise estimates on the spatial extent of dense PS degradation and on biomass and peat derived emissions is required for assessing national emissions from forest degradation in Peru and is essential for supporting initiatives aiming at reducing degradation activities

    Degradation effects in sc-Si PV modules subjected to natural and induced ageing after several years of field operation

    Get PDF
    This paper presents ageing effects observed in sc-Si PV modules operating in field conditions for 18 and over 22 years. The effects of both natural ageing processes and induced ageing by external agents, causing partial or total shading of cells for a prolonged period of time, are examined. Optical degradation effects observed through visual inspection include discoloration of the EVA, degradation of the AR coating, degradation of the interface between the cell and encapsulant, corrosion of busbars and fingers, and tears, bubbles and humidity ingress at the back surface of the modules. Thermal degradation effects examined via IR thermography reveal the existence of hot cells, hotspots on the busbars, and colder bubbles. Modules' power and performance degradation is assessed through I-V curve analysis. Results show naturally aged modules to exhibit milder ageing effects than modules subjected to induced ageing, an outcome also supported by their power degradation ratio

    Climate and Land Degradation

    Get PDF
    On the occasion of the Seventh session of the Conference of Parties, The World Meteorological Organization (WMO) has prepared this brochure which explains the role of different climatic factors in land degradation and WMO's contribution in addressing this important subject. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional, Informal education, General public
    corecore