1,768,874 research outputs found

    Soil degradation: a threat to developing-country food security by 2020?

    Get PDF
    Global population in the year 2020 will be a third higher than in 1995, but demand for food and fiber will rise by an even higher proportion, as incomes grow, diets diversify, and urbanization accelerates. However this demand is met, population and farming pressure on land resources will intensify greatly. There is growing concern in some quarters that a decline in long-term soil productivity is already seriously limiting food production in the developing world, and that the problem is getting worse. Sarah Sherr first focuses on the magnitude and effects of soil degradation. She then addresses soil degradation in the future and ends her brief with policy and research priorities.Soil degradation Developing countries., Food security Developing countries.,

    Degradation Behaviour of Aluminium in 2M HCl/HNO3 in the Presence of Arachis hypogeae Natural Oil

    Get PDF
    Studies have been made on the corrosion inhibition of aluminium alloy in 2M HCl and HNO3/Arachis hypogeae natural oil using gravimetric and potentiodynamic polarization techniques at 25oC. The results revealed that Arachis hypogeae oil in 2M HCl and HNO3-aluminium environment decreased the corrosion rate at various concentrations considered. Higher inhibitor efficiency (IE) of 83.48, 96.24 and 95.57% using potentiodynamic polarization methods were demonstrated in HCl solution at 20, 50 and 100%v/v Arachis hypogeae. While an IE of 99.03, 99.94 and 88.55% were recorded at 20, 50 and 100%v/v Arachis hypogeae respectively. The IE using the gravimetric method for both aluminium-HCl/HNO3-Arachis 20, 50 and 100%v/v Arachis hypogeae was significantly enhanced. The scanning electron microscope (SEM) surface morphology of as-corroded uninhibited condition showed severe damage and pits formation than as-corroded inhibited conditions. The additions of Arachis hypogeae as corrosion inhibitor indicate a high potential value, IE and polarization resistance with decreased in current density. The methods for the corrosion assessment of the aluminium were in agreement and a mixed-type corrosion exist which obeyed Langmuir adsorption isotherm

    Valve degradation detector

    Get PDF
    To determine corrosive degradation of valve while it is in service, detect changes in surface roughness or presence of corrosive layers at junction of poppet and seat by measuring temperature gradients created across junction by small heat source

    Oxidative degradation of a novel AMP/AEP blend designed for CO2 capture based on partial oxy-combustion technology

    Get PDF
    Versión aceptada. Embargo 24 mesesSolvent degradation and volatile compound emissions are two of the major concerns about the deployment of carbon capture technologies based on chemical absorption. In this context, partial oxy-combustion might reduce the solvent degradation due to the use of a higher CO2 concentrated flue gas. This work evaluates the oxidative degradation of a novel AMP/AEP blend, namely POS #1, under partial oxy-combustion conditions. The effects of temperature and flue gas composition were evaluated in terms of solvent loss, degradation rates, NH3 emissions and degradation products. The experiments were set at temperatures up to 70 °C and two levels of O2 concentration – 3%v/v and 6%v/v. The CO2 concentration of the flue gas ranged between 15%v/v and 60%v/v CO2. The novel solvent POS#1 showed high resistance to degrade and resulted in lower degradation rates than MEA in all the operating conditions evaluated in this work. The maximum degradation of AEP and AMP was 24% and 19%, respectively. MEA degraded almost double under the same conditions. Temperature and O2 concentration enhanced the oxidative degradation of POS #1. However, the use of higher CO2 concentration in the flue gas led to lower degradation rates of AEP and AMP and hence oxidative degradation was partially inhibited under partial oxy-combustion conditions. The presence of higher CO2 content in the flue gas decreased the NH3 production and a 70% reduction of its emissions was achieved as the CO2 concentration shifted from 15%v/v to 60%v/v. Other major degradation compounds such as formate and 2,4-lutidine were also decreased. New degradation products were not identified so that the suggested degradation pathways proposed in the literature were not influenced by the presence of higher CO2 concentrations.Ministerio de Economia y Competitividad CTM-2014-58573-RUnión Europea, European Development Research Fund (EDRF

    Degradation modeling applied to residual lifetime prediction using functional data analysis

    Full text link
    Sensor-based degradation signals measure the accumulation of damage of an engineering system using sensor technology. Degradation signals can be used to estimate, for example, the distribution of the remaining life of partially degraded systems and/or their components. In this paper we present a nonparametric degradation modeling framework for making inference on the evolution of degradation signals that are observed sparsely or over short intervals of times. Furthermore, an empirical Bayes approach is used to update the stochastic parameters of the degradation model in real-time using training degradation signals for online monitoring of components operating in the field. The primary application of this Bayesian framework is updating the residual lifetime up to a degradation threshold of partially degraded components. We validate our degradation modeling approach using a real-world crack growth data set as well as a case study of simulated degradation signals.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS448 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2

    Get PDF
    In this work, degradation of the anthraquinonic dye Acid Blue 25 by non-thermal plasma at atmospheric pressure with and without photocatalyst is investigated. Titanium dioxide (TiO2) is used as a photocatalyst. The dye degradation by plasma in the presence of TiO2 is investigated as a function of TiO2 concentration, dye concentration and pH. The degradation rate is higher in acidic solutions with pH of 2 to 4.3, especially at pH 2, and decreases to 0.38 mg L-1 min(-1) with the increase of pH from 2 to 5.65. A similar effect is observed in basic media, where a higher degradation rate is found at pH = 10.3. The degradation rate increases in the presence of TiO2 compared to the discharge without photocatalysis. The results show that the degradation of the dye increases in the presence of TiO2 until the catalyst load reaches 0.5 g L-1 after which the suppression of AB25 degradation is observed. The results indicate that the tested advanced oxidation processes are very effective for the degradation of AB25 in aqueous solutions

    Statistical modeling, parameter estimation and measurement planning for PV degradation

    Get PDF
    Photovoltaics (PV) degradation is a key consideration during PV performance evaluation. Accurately predicting power delivery over the course of lifetime of PV is vital to manufacturers and system owners. With many systems exceeding 20 years of operation worldwide, degradation rates have been reported abundantly in the recent years. PV degradation is a complex function of a variety of factors, including but not limited to climate, manufacturer, technology and installation skill. As a result, it is difficult to determine degradation rate by analytical modeling; it has to be measured. As one set of degradation measurements based on a single sample cannot represent the population nor be used to estimate the true degradation of a particular PV technology, repeated measures through multiple samples are essential. In this chapter, linear mixed effects model (LMM) is introduced to analyze longitudinal degradation data. The framework herein introduced aims to address three issues: 1) how to model the difference in degradation observed in PV modules/systems of a same technology that are installed at a shared location; 2) how to estimate the degradation rate and quantiles based on the data; and 3) how to effectively and efficiently plan degradation measurements

    The Thermal degradation of Bisphenol A Polycarbonate in Air

    Get PDF
    The thermal degradation of polycarbonate in air was studied as a function of mass loss using TGA/FTIR, GC/MS and LC/MS. In the main degradation region, 480–560 °C, the assigned structures of smaller molecules and linear molecules that evolved in air were very similar to those obtained from the degradation in nitrogen; the degradation of polycarbonate follows chain scission of the isopropylidene linkage, in agreement with the bond dissociation energies, and hydrolysis/alcoholysis of carbonate linkage. Compared to the degradation in nitrogen, some differences were observed primarily in the beginning stage of degradation. Oxygen may facilitate branching as well as radical formation via the formation of peroxides. These peroxides undergo further dissociations and combinations, producing aldehydes, ketones and some branched structures, mainly in the beginning stage of degradation. It is speculated that the intermediate char formed in the beginning due to branching reactions of peroxide interferes with the mass transfer through the surface of degrading polycarbonate in the main degradation. Thus, even though the mass loss begins earlier in air, a slower mass loss rate is observed
    • …
    corecore