577,723 research outputs found

    Defect grating modes as superimposed grating states

    Get PDF
    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the direct calculation of the defect wavelength as the eigenvalue in a non-standard eigenvalue problem

    Properties of the defect modes in 1D lossy photonic crystals containing two types of negative-index-material defects

    Full text link
    In this paper, the characteristic matrix method is employed to theoretically investigate the propagation of electromagnetic waves through one-dimensional defective lossy photonic crystals (PCs) composed of negative index materials (NIMs) and positive index materials (PIMs). We consider symmetric and asymmetric geometric structures with two different types of NIM defect layers at the center of the structure. The effects of the polarization and the angle of incidence on the defect modes in the transmission spectra of both structures are investigated. The results show that the number of the defect modes within the photonic band gap (PBG) depends on the type of the NIM defect layer and is independent of the geometrical structure. Moreover, it is shown that the defect mode frequency increases as the angle of incidence increases. This property is also independent of the geometry of the structure. The results can lead to designing new types of narrowband and multichannel transmission filters.Comment: 16 pages, 11 figures. arXiv admin note: text overlap with arXiv:1301.035

    First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy

    Full text link
    Convergence of density-functional supercell calculations for defect formation energies, charge transition levels, localized defect state properties, and defect atomic structure and relaxation is investigated using the arsenic split interstitial in GaAs as an example. Supercells containing up to 217 atoms and a variety of {\bf k}-space sampling schemes are considered. It is shown that a good description of the localized defect state dispersion and charge state transition levels requires at least a 217-atom supercell, although the defect structure and atomic relaxations can be well converged in a 65-atom cell. Formation energies are calculated for the As split interstitial, Ga vacancy, and As antisite defects in GaAs, taking into account the dependence upon chemical potential and Fermi energy. It is found that equilibrium concentrations of As interstitials will be much lower than equilibrium concentrations of As antisites in As-rich, nn-type or semi-insulating GaAs.Comment: 10 pages, 5 figure

    Complete Delocalization in a Defective Periodic Structure

    Get PDF
    We report on the existence of stable, completely delocalized response regimes in a nonlinear defective periodic structure. In this state of complete delocalization, despite the presence of the defect, the system exhibits in-phase oscillation of all units with the same amplitude. This elimination of defect-borne localization may occur in both the free and forced responses of the system. In the absence of external driving, the localized defect mode becomes completely delocalized at a certain energy level. In the case of a damped-driven system, complete delocalization may be realized if the driving amplitude is beyond a certain threshold. We demonstrate this phenomenon numerically in a linear periodic structure with one and two defective units possessing a nonlinear restoring force. We derive closed-form analytical expressions for the onset of complete delocalization and discuss the necessary conditions for its occurrence

    Phase stability and the arsenic vacancy defect in In<sub>x</sub>Ga<sub>1-x</sub>As

    Get PDF
    The introduction of defects, such as vacancies, into InxGa1-xAs can have a dramatic impact on the physical and electronic properties of the material. Here we employ ab initio simulations of quasirandom supercells to investigate the structure of InxGa1-xAs and then examine the energy and volume changes associated with the introduction of an arsenic vacancy defect. We predict that both defect energies and volumes for intermediate compositions of InxGa1-xAs differ significantly from what would be expected by assuming a simple linear interpolation of the end member defect energies/volumes

    Effects of inhomogeneous broadening on reflection spectra of Bragg multiple quantum well structures with a defect

    Full text link
    The reflection spectrum of a multiple quantum well structure with an inserted defect well is considered. The defect is characterized by the exciton frequency different from that of the host's wells. It is shown that for relatively short structures, the defect produces significant modifications of the reflection spectrum, which can be useful for optoelectronic applications. Inhomogeneous broadening is shown to affect the spectrum in a non-trivial way, which cannot be described by the standard linear dispersion theory. A method of measuring parameters of both homogeneous and inhomogeneous broadenings of the defect well from a single CW reflection spectrum is suggested.Comment: 27 pages, 6 eps figures; RevTe

    An \emph{ab initio} study on split silicon-vacancy defect in diamond: electronic structure and related properties

    Full text link
    The split silicon-vacancy defect (SiV) in diamond is an electrically and optically active color center. Recently, it has been shown that this color center is bright and can be detected at the single defect level. In addition, the SiV defect shows a non-zero electronic spin ground state that potentially makes this defect an alternative candidate for quantum optics and metrology applications beside the well-known nitrogen-vacancy color center in diamond. However, the electronic structure of the defect, the nature of optical excitations and other related properties are not well-understood. Here we present advanced \emph{ab initio} study on SiV defect in diamond. We determine the formation energies, charge transition levels and the nature of excitations of the defect. Our study unravel the origin of the dark or shelving state for the negatively charged SiV defect associated with the 1.68-eV photoluminescence center.Comment: 8 pages, 5 figures, 1 tabl
    corecore