2,579 research outputs found

    Defending Against Denial of Service

    Get PDF
    Civil Society currently faces significant cyber threats. At the top of the list of those threats are Denial of Service (DoS) attacks. The websites of many organizations and individuals have already come under such attacks, and the frequency of those attacks are on the rise. Civil Society frequently does not have the kinds of resources or technical know-how that is available to commercial enterprise and government websites, and often have to exist in adverse political environments where every avenue available, both legal and illegal, is used against them. Therefore, the threat of DoS attacks is unlikely to go away any time soon.A Denial of Service (DoS) attack is any attack that overwhelms a website, causing the content normally provided by that website to no longer be available to regular visitors of the website. Distributed Denial of Service (DDoS) attacks are traffic volumebased attacks originating from a large number of computers, which are usually compromised workstations. These workstations, known as 'zombies', form a widely distributed attack network called a 'botnet'. While many modern Denial of Service attacks are Distributed Denial of Service attacks, this is certainly not true for all denials of service experienced by websites. Therefore, when users first start experiencing difficulty in getting to the website content, it should not be assumed that the site is under a DDoS attack. Many forms of DoS are far easier to implement than DDoS, and so these attacks are still used by parties with malicious intent. Many such DoS attacks are easier to defend against once the mechanism used to cause the denial of service is known. Therefore, it is paramount to do proper analysis of attack traffic when a site becomes unable to perform its normal function. There are two parts to this guide. The first part outlines preparatory steps that can be taken by Civil Society organizations to improve their website's resilience, should it come under attack. However, we do understand that most Civil Society organizations' first introduction to DoS attacks comes when they suddenly find themselves the victim of an attack. The second part of this guide provides a step-by-step process to assist the staff of NGOs to efficiently deal with that stressful situation

    The Australian Cyber Security Centre threat report 2015

    Get PDF
    Introduction: The number, type and sophistication of cyber security threats to Australia and Australians are increasing. Due to the varied nature of motivations for cyber adversaries targeting Australian organisations, organisations could be a target for malicious activities even if they do not think the information held on their networks is valuable, or that their business would be of interest to cyber adversaries. This first unclassified report by the ACSC describes the range of cyber adversaries targeting Australian networks, explains their motivations, the malicious activities they are conducting and their impact, and provides specific examples of activity targeting Australian networks during 2014. This report also offers mitigation advice on how organisations can defend against these activities. The ACSC’s ability to detect and defend against sophisticated cyber threats continues to improve. But cyber adversaries are constantly improving their tradecraft in their attempts to defeat our network defences and exploit the new technologies we embrace. There are gaps in our understanding of the extent and nature of malicious activity, particularly against the business sector. The ACSC is reaching out to industry to build partnerships to improve our collective understanding. Future iterations of the Threat Report will benefit from these partnerships and help to close gaps in our knowledge

    Telephony Denial of Service Defense at Data Plane (TDoSD@DP)

    Get PDF
    The Session Initiation Protocol (SIP) is an application-layer control protocol used to establish and terminate calls that are deployed globally. A flood of SIP INVITE packets sent by an attacker causes a Telephony Denial of Service (TDoS) incident, during which legitimate users are unable to use telephony services. Legacy TDoS defense is typically implemented as network appliances and not sufficiently deployed to enable early detection. To make TDoS defense more widely deployed and yet affordable, this paper presents TDoSD@DP where TDoS detection and mitigation is programmed at the data plane so that it can be enabled on every switch port and therefore serves as distributed SIP sensors. With this approach, the damage is isolated at a particular switch and bandwidth saved by not sending attack packets further upstream. Experiments have been performed to track the SIP state machine and to limit the number of active SIP session per port. The results show that TDoSD@DP was able to detect and mitigate ongoing INVITE flood attack, protecting the SIP server, and limiting the damage to a local switch. Bringing the TDoS defense function to the data plane provides a novel data plane application that operates at the SIP protocol and a novel approach for TDoS defense implementation.Final Accepted Versio

    Preventing DDoS using Bloom Filter: A Survey

    Full text link
    Distributed Denial-of-Service (DDoS) is a menace for service provider and prominent issue in network security. Defeating or defending the DDoS is a prime challenge. DDoS make a service unavailable for a certain time. This phenomenon harms the service providers, and hence, loss of business revenue. Therefore, DDoS is a grand challenge to defeat. There are numerous mechanism to defend DDoS, however, this paper surveys the deployment of Bloom Filter in defending a DDoS attack. The Bloom Filter is a probabilistic data structure for membership query that returns either true or false. Bloom Filter uses tiny memory to store information of large data. Therefore, packet information is stored in Bloom Filter to defend and defeat DDoS. This paper presents a survey on DDoS defending technique using Bloom Filter.Comment: 9 pages, 1 figure. This article is accepted for publication in EAI Endorsed Transactions on Scalable Information System
    • …
    corecore