2 research outputs found

    Formalization and Model Checking of BPMN Collaboration Diagrams with DD-LOTOS

    Get PDF
    Business Process Model and Notation (BPMN) is a standard graphical notation for modeling complex business processes. Given the importance of business processes, the modeling analysis and validation stage for BPMN is essential. In recent years, BPMN notation has become a widespread practice in business process modeling because of these intuitive diagrams. BPMN diagrams are built from basic elements. The major challenge of BPMN diagrams is the lack of formal semantics, which leads to several interpretations of the concerned diagrams. Hence, this work aims to propose an approach for checking BPMN collaboration diagrams to guarantee some properties of smooth functioning of systems modeled by BPMN notation. The verification approach used in this work is based on model checking techniques. The approach proposes as a first step a formal semantics of the collaboration diagrams in terms of the formal language DD-LOTOS, i.e., a phase of the transformation of collaboration diagrams into DD-LOTOS. This transformation is guided by applying the inference rules of the formal semantics of the DD-LOTOS formal language, and we then use the UPPAAL model checker to check the absence of deadlock, safety properties, and liveness properties

    Formalization of BPMN Gateways using the DD-LOTOS Formal Language

    Get PDF
    Business Process Model and Notation (BPMN), is a standardized graphical language used for the graphical modeling of business processes. A BPMN model is composed of several small graphs called elements; these elements make it possible to describe the activities, the events, and the interactions between the components of a business process. Among the essential elements of BPMN are gateways, which control the flow of data. However, the big challenge of these gateways is the existence of several interpretations of the same BPMN model containing gateways; this is due to the informal and ambiguous definition. Several works have proposed the formalization of gateways using formal languages such as process algebras, Petri nets, etc. The purpose of this article is to propose a formalization of BPMN gateways using the formal language DD-LOTOS. DDLOTOS is defined on a semantics of true parallelism called maximality semantics and allows to support distribution and temporal constraints. We then propose the verification of certain properties using the UPPAAL model checker. Our approach has been validated through a case study representing the online purchasing process
    corecore