56,863 research outputs found

    Abnormal prothrombin (DES-y-Carboxy Prothrombin) in hepatocellular carcinoma

    Get PDF
    Des-γ-carboxy prothrombin (DCP), a protein induced by vitamin K absence or antagonist-II (PIVKA-II) was measured by an enzyme immunoassay (E-1023) using anti-DCP monoclonal antibody in 92 patients with various hepatobiliary diseases. Thirty-six of the 38 patients (94.7%) with hepatocellular carcinoma (HCC) had abnormal DCP levels greater than 0.1 arbitrary unit (AU)/ml, but only 18 of the 35 patients (51.4%) had AFP greater than 100 ng/ml (suspicious levels for HCC). There was no correlation between plasma or serum DCP and serum alpha-fetoprotein (AFP) levels. Serum alpha fetoprotein was elevated (above 20 ng/ml) in 23 of the 35 patients (65.7%), and DCP was elevated in all of the remaining 12 patients with normal AFP. DCP levels returned to normal levels following curative hepatic resection or orthotopic liver transplantation for HCC. DCP is a useful tumor marker in the diagnosis and postoperative monitoring of patients with HCC

    Domination Cover Pebbling: Structural Results

    Full text link
    This paper continues the results of "Domination Cover Pebbling: Graph Families." An almost sharp bound for the domination cover pebbling (DCP) number for graphs G with specified diameter has been computed. For graphs of diameter two, a bound for the ratio between the cover pebbling number of G and the DCP number of G has been computed. A variant of domination cover pebbling, called subversion DCP is introducted, and preliminary results are discussed.Comment: 15 page

    The Determination of Dendrite Coherency Point Characteristics Using Three New Methods for Aluminum Alloys

    Get PDF
    The aim of this work is to give an overview of existing methods and to introduce three new methods for the determination of the Dendrite Coherency Point (DCP) for AlSi10Mg alloys, as well as to compare the acquired values of DCP based on a thermal analysis and on the analysis of cooling curves working with only one thermocouple. Additionally, the impact of alloying and contaminant elements on the DCP will be also studied. The first two proposed methods employ the higher order derivatives of the cooling curves. The DCP was determined as the crossing point of the second and third derivative curves plotted versus time (method 1) or that of the temperature (method 2) with the zero line just after the maximum liquidus temperature. The third proposed method is based on the determination of the crossing point of the third solid fraction derivative curve with the zero line, corresponding to a minimum of the second derivative. A Taguchi design for the experiments was developed to study the DCP values in the AlSi10Mg alloy. The DCP temperature values of the test alloys were compared with the DCP temperatures predicted by the previous methods and the influence of the major and minor alloying elements and contaminants over the DCP. The new processes obtained a correlation factor r2 from 0.954 and 0.979 and a standard deviation from 1.84 to 2.6 °C. The obtained correlation values are higher or similar than those obtained using previous methods with an easier way to define the DCP, allowing for a better automation of the accuracy of DCP determination. The use of derivative curves plotted versus temperature employed in the last two proposed methods, where the test samples did not have an influence over the registration curves, is proposed to have a better accuracy than those of the previously described methods.This work has been partially funded by the Basque Government through the ETORGAI programme ZE-2016/00018 and from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No. 296024

    Double coset problem for parabolic subgroups of braid groups

    Full text link
    We provide the first solution to the double coset problem (DCP) for a large class of natural subgroups of braid groups, namely for all parabolic subgroups which have a connected associated Coxeter graph. Update: We succeeded to solve the DCP for all parabolic subgroups of braid groups.Comment: 8 pages. Update remark adde

    Extension of the B3LYP - Dispersion-Correcting Potential Approach to the Accurate Treatment of both Inter- and Intramolecular Interactions

    Full text link
    We recently showed that dispersion-correcting potentials (DCPs), atom-centered Gaussian-type functions developed for use with B3LYP (J. Phys. Chem. Lett. 2012, 3, 1738-1744) greatly improved the ability of the underlying functional to predict non-covalent interactions. However, the application of B3LYP-DCP for the {\beta}-scission of the cumyloxyl radical led a calculated barrier height that was over-estimated by ca. 8 kcal/mol. We show in the present work that the source of this error arises from the previously developed carbon atom DCPs, which erroneously alters the electron density in the C-C covalent-bonding region. In this work, we present a new C-DCP with a form that was expected to influence the electron density farther from the nucleus. Tests of the new C-DCP, with previously published H-, N- and O-DCPs, with B3LYP-DCP/6-31+G(2d,2p) on the S66, S22B, HSG-A, and HC12 databases of non-covalently interacting dimers showed that it is one of the most accurate methods available for treating intermolecular interactions, giving mean absolute errors (MAEs) of 0.19, 0.27, 0.16, and 0.18 kcal/mol, respectively. Additional testing on the S12L database of complexation systems gave an MAE of 2.6 kcal/mol, showing that the B3LYP-DCP/6-31+G(2d,2p) approach is one of the best-performing and feasible methods for treating large systems dominated by non-covalent interactions. Finally, we showed that C-C making/breaking chemistry is well-predicted using the newly developed DCPs. In addition to predicting a barrier height for the {\beta}-scission of the cumyloxyl radical that is within 1.7 kcal/mol of the high-level value, application of B3LYP-DCP/6-31+G(2d,2p) to 10 databases that include reaction barrier heights and energies, isomerization energies and relative conformation energies gives performance that is amongst the best of all available dispersion-corrected density-functional theory approaches

    Long term measurement network for FIFE

    Get PDF
    The objectives were: to obtain selected instruments which were not standard equipment on the Portable Automated Mesometeorological (PAM) and Data Control Platform (DCP) stations; to assist in incorporation of these instruments onto the PAM and DCP stations; to help provide routine maintenance of the instruments; to conduct periodic instrument calibrations; and to repair or replace malfunctioning instruments when possible. All of the objectives were or will be met soon. All instruments and the necessary instrument stands were purchased or made and were available for inclusion on the PAM and DCP stations before the beginning of the IFC-1. Due to problems beyond control, the DCP stations experienced considerable difficulty in becoming operational. To fill some of the gaps caused by the DCP problems, Campbell CR21-X data loggers were installed and the data collected on cassette tapes. Periodic checks of all instruments were made, to maintain data quality, to make necessary adjustments in certain instruments, to replace malfunctioning instruments, and to provide instrument calibration. All instruments will be calibrated before the beginning of the 1988 growing season as soon as the weather permits access to all stations and provides conditions that are not too harsh to work in for extended periods of time

    Mining Frequent Neighborhood Patterns in Large Labeled Graphs

    Full text link
    Over the years, frequent subgraphs have been an important sort of targeted patterns in the pattern mining literatures, where most works deal with databases holding a number of graph transactions, e.g., chemical structures of compounds. These methods rely heavily on the downward-closure property (DCP) of the support measure to ensure an efficient pruning of the candidate patterns. When switching to the emerging scenario of single-graph databases such as Google Knowledge Graph and Facebook social graph, the traditional support measure turns out to be trivial (either 0 or 1). However, to the best of our knowledge, all attempts to redefine a single-graph support resulted in measures that either lose DCP, or are no longer semantically intuitive. This paper targets mining patterns in the single-graph setting. We resolve the "DCP-intuitiveness" dilemma by shifting the mining target from frequent subgraphs to frequent neighborhoods. A neighborhood is a specific topological pattern where a vertex is embedded, and the pattern is frequent if it is shared by a large portion (above a given threshold) of vertices. We show that the new patterns not only maintain DCP, but also have equally significant semantics as subgraph patterns. Experiments on real-life datasets display the feasibility of our algorithms on relatively large graphs, as well as the capability of mining interesting knowledge that is not discovered in prior works.Comment: 9 page
    corecore