4 research outputs found

    Enhancing RAN throughput by optimized CoMP controller placement in optical metro networks

    Get PDF
    The fifth generation (5G) of mobile communications will target unprecedented network performance and quality of service for end users. Among the various aspects which will be addressed in 5G, advanced cell coordination is deemed as crucial to maximize network throughput. In particular, in this paper, we refer to coordinated multipoint (CoMP) techniques that allow coordinating groups of cells (i.e., clusters) through a coordination controller, namely, a radio controller coordinator (RCC), to enhance the mobile network throughput by reducing interference. We focus on the placement of RCCs in the metro optical network and on its impact on the performance of cell coordination. We provide strategies to perform an optimized placement of such controllers in metro optical networks in order to maximize network throughput via cell coordination. Several CoMP techniques have been designed, whose throughput gain is affected by various factors, e.g., gain increases with the cluster size, while it decreases for larger latencies between the RCC and cells. As current metro networks are characterized by a hierarchical architecture with different levels of central offices, the choice of where to place controllers to maximize throughput gain can be optimized according to several factors, i.e., network geographical dimension, cells density, and available technology. In addition, selection of the most appropriate CoMP technique to be used in each cluster is not trivial, as the gain provided by the various techniques is differently affected by cluster size and latency between the RCC and cells. Our results show that under certain conditions optimized placement provides up to around 10% higher coordination gain with respect to fixed controller placement. Moreover, when adopting fronthaul technology, the coordination gain provided by an optimized controller placement may increase up to 20% in comparison to fixed placement

    Traffic Adaptation and Energy Efficiency for Small Cell Networks with Dynamic TDD

    Get PDF
    The traffic in current wireless networks exhibits large variations in uplink (UL) and downlink (DL), which brings huge challenges to network operators in efficiently allocating radio resources. Dynamic time-division duplex (TDD) is considered as a promising scheme that is able to adjust the resource allocation to the instantaneous UL and DL traffic conditions, also known as traffic adaptation. In this work, we study how traffic adaptation and energy harvesting can improve the energy efficiency (EE) in multi-antenna small cell networks operating dynamic TDD. Given the queue length distribution of small cell access points (SAPs) and mobile users (MUs), we derive the optimal UL/DL configuration to minimize the service time of a typical small cell, and show that the UL/DL configuration that minimizes the service time also results in an optimal network EE, but does not necessarily achieve the optimal EE for SAP or MU individually. To further enhance the network EE, we provide SAPs with energy harvesting capabilities, and model the status of harvested energy at each SAP using a Markov chain. We derive the availability of the rechargeable battery under several battery utilization strategies, and observe that energy harvesting can significantly improve the network EE in the low traffic load regime. In summary, the proposed analytical framework allows us to elucidate the relationship between traffic adaptation and network EE in future dense networks with dynamic TDD. With this work, we quantify the potential benefits of traffic adaptation and energy harvesting in terms of service time and EE
    corecore