4 research outputs found

    Rank-Two Beamforming and Power Allocation in Multicasting Relay Networks

    Full text link
    In this paper, we propose a novel single-group multicasting relay beamforming scheme. We assume a source that transmits common messages via multiple amplify-and-forward relays to multiple destinations. To increase the number of degrees of freedom in the beamforming design, the relays process two received signals jointly and transmit the Alamouti space-time block code over two different beams. Furthermore, in contrast to the existing relay multicasting scheme of the literature, we take into account the direct links from the source to the destinations. We aim to maximize the lowest received quality-of-service by choosing the proper relay weights and the ideal distribution of the power resources in the network. To solve the corresponding optimization problem, we propose an iterative algorithm which solves sequences of convex approximations of the original non-convex optimization problem. Simulation results demonstrate significant performance improvements of the proposed methods as compared with the existing relay multicasting scheme of the literature and an algorithm based on the popular semidefinite relaxation technique

    Beamforming Design for Wireless Information and Power Transfer Systems: Receive Power-Splitting Versus Transmit Time-Switching

    Full text link
    © 1972-2012 IEEE. Information and energy can be transferred over the same radio-frequency channel. In the power-splitting (PS) mode, they are simultaneously transmitted using the same signal by the base station (BS) and later separated at the user (UE)'s receiver by a power splitter. In the time-switching (TS) mode, they are either transmitted separately in time by the BS or received separately in time by the UE. In this paper, the BS transmit beamformers are jointly designed with either the receive PS ratios or the transmit TS ratios in a multicell network that implements wireless information and power transfer (WIPT). Imposing UE-harvested energy constraints, the design objectives include: 1) maximizing the minimum UE rate under the BS transmit power constraint, and 2) minimizing the maximum BS transmit power under the UE data rate constraint. New iterative algorithms of low computational complexity are proposed to efficiently solve the formulated difficult nonconvex optimization problems, where each iteration either solves one simple convex quadratic program or one simple second-order-cone-program. Simulation results show that these algorithms converge quickly after only a few iterations. Notably, the transmit TS-based WIPT system is not only more easily implemented but outperforms the receive PS-based WIPT system as it better exploits the beamforming design at the transmitter side

    D.C. iterations for SINR maximin multicasting in Cognitive radio

    Full text link
    The design of transmit beamforming vectors to maximize the threshold of the signal-to-interference-plus-noise ratios (SINR) at the secondary receivers in cognitive multicast transmission is maximin optimization of quadratic fractional functions. There is no efficient solver for this hard maximin program. In the present paper, we show that the program can be effectively represented by a canonical d.c. (difference of convex functions) program of the same size. Accordingly, d.c. iterations are derived to locate its optimized solution. Our thorough numerical examples verify that the proposed algorithms offer almost global optimality whilst requiring relatively low computational load. © 2012 IEEE
    corecore