72,463 research outputs found

    Isopropyl alcohol recovery by heteroazeotropic batch distillation

    Get PDF
    Solvent recovery is becoming a major issue in the pharmaceutical and specialty chemical industries. Solvent recovery by conventional batch distillation is limited by the frequent presence of azeotropes in the used solvent mixtures. Most distillation processes for the separation of azeotropic or difficult zeotropic mixtures involve the addition of an entrainer (homogeneous and heterogeneous azeotropic distillation or extractive distillation). In this study the recovery of IPA (isopropyl alcohol) from an industrial waste stream (IPA/water mixture) was studied by conventional batch distillation and heteroazeotropic batch distillation, using cyclohexane as entrainer. First the ternary IPA/water/cyclohexane azeotrope (boiling temperature of 64.1 °C), then the binary IPA/cyclohexane azeotrope (boiling temperature of 69.3°C) and finally pure IPA was distilled. 99.96 mass% IPA could be obtained by heteroazeotropic distillation, using cyclohexane as entrainer. By using this procedure the IPA recovery is 97.6%, which is high compared to the conventional distillation techniques. The binary azeotrope could be reused in a subsequent heteroazeotropic batch distillation

    Use of Pd/activated carbon fiber catalyst to dehydrogenate cyclohexane

    Get PDF
    In this work, activated carbon fibers (ACFs) were prepared from polyacrylonitrile fibers, Pd catalyst was loaded onto the ACFs. The BET surface areas noted before activation were in the range of 120-140 m2/g. Activation of the fibers with carbon dioxide increased the surface areas of the fibers to about 150-190 m2/g. Diameters of metallic Pd particles loaded along the fibers ranged from 50 nm to 100 nm. The shape of the Pd particles was generally spherical albeit some non-spherical Pd particles were also noted. The catalytic activity of the Pd/ACF system in dehydrogenating cyclohexane at 350oC under liquid-phase conditions was investigated. Utilizing the Pd/ACF system in the micro-autoclave of a differential scanning calorimetric system was described for the liquid-phase catalytic dehydrogenation of cyclohexane. The DSC thermogram of the non-catalytic system yielded fewer endothermic events compared to the catalytic dehydrogenation of cyclohexane in the presence of Pd/ACF. The dehydrogenation of cyclohexane at 350oC was a first-order reaction with a rate constant, k = 3.5 x 10-4 s-1. GC-MS analyses of the products of catalytic dehydrogenation revealed a wide distribution of saturated and unsaturated hydrocarbons that were not present in the corresponding non-catalytic experiment. The presence of high molecular weight products could be explained by the recombination of carbon radicals during reaction

    On the Stable Relative Orientation of Groups Connected by a Carbon-Carbon Single Bond

    Get PDF
    Langseth and his co-workers [1] have recently applied the results of essentially incomplete spectroscopic studies of liquid cyclohexane, symmetrical tetrachloroethane, and ethylene deuterobromide to a discussion of the intramolecular forces restricting internal rotation about the C-C bond. We believe that none of their structural conclusions is correct. Their discussion is based on their conclusion that in these molecules the opposed or eclipse configurations are the stable ones. Insofar as liquid cyclohexane and symmetrical tetrachloroethane are concerned this conclusion is most probably incorrect since it directly contradicts the results of a great number of more straightforward studies of these and similar molecules

    Phenol Deoxygenation over Hydrotreating Catalysts

    Get PDF
    Phenol deoxygenation has been investigated as a model reaction for the deoxygenation of fatty acid methyl esters in biodiesel. Hydrodeoxygenated biodiesel is a drop-in fuel for petroleum diesel, and is a premium diesel with a high cetane number. As the first step in this research, two molybdenum catalysts were prepared, characterized and tested in a small-scale reactor. These catalysts were found to produce small amounts of benzene and cyclohexanol in the product stream, and confirmed the activity of the catalyst. A commercial cobalt molybdenum catalyst (Harshaw HT-400) was also tested and benzene, cyclohexanol, and cyclohexane were identified as products. Future work aims to synthesize catalysts to produce a high yield of cyclohexane. Once the conditions are optimized, we will do tests with biodiesel

    The autoignition of cyclopentane and cyclohexane in a shock tube

    Full text link
    Ignition delay times of cyclohexane-oxygen-argon and cyclopentane-oxygen-argon mixtures have been measured in a shock tube, the onset of ignition being detected by OH radical emission. Mixtures contained 0.5 or 1 % of hydrocarbon for equivalence ratios ranging from 0.5 to 2. Reflected shock waves allowed temperatures from 1230 to 1800 K and pressures from 7.3 to 9.5 atm to be obtained. These measurements have shown that cyclopentane is much less reactive than cyclohexane, as for a given temperature the observed autoignition delay times were about ten times higher for the C5 compound compared to the C6. Detailed mechanisms for the combustion of cyclohexane and cyclopentane have been proposed to reproduce these results. The elementary steps included in the kinetic models of the oxidation of cyclanes are close to those proposed to describe the oxidation of acyclic alkanes and alkenes. Consequently, it has been possible to obtain these models by using an improved version of software EXGAS, a computer package developed to perform the automatic generation of detailed kinetic models for the gas-phase oxidation and combustion of linear and branched alkanes and alkenes. Nevertheless, the modelling of the oxidation of cyclanes requires to consider new types of generic reactions, and especially to define new correlations for the estimation of the rate constants. Ab initio calculations have been used to better know some of the rate constants used in the case of cyclopentane. The main reaction pathways have been derived from flow rate and sensitivity analyses

    On the reliability of an optical fibre probe in bubble column under industrial relevant operating conditions

    Get PDF
    When bubble columns are operated under industrial relevant conditions (high gas and liquid flow rates, large bubbles and vortices,. . .), local data, and especially bubble size values, are difficult to obtain. However, such data are essential for the comprehension of two-phase flow phenomena in order to design or to improve industrial installations. When high gas flow rates and organic liquids are used, intrusive optic probes are considered. This work investigates different ways to derive reliable local information on gas phase from double optic probe raw data. As far as possible, these results have been compared with global data, easier to measure in such conditions. Local gas hold-up, eG, and bubble frequency, fB, are easily obtained, but bubble velocity and bubble diameter determination is not obvious. For a better reliability, the final treatment that is proposed for velocity and size estimation is based on mean values only: the bubble velocity is considered as the most probable velocity ~v issued from raw signals inter-correlation function and the mean Sauter diameter is calculated through dSM ¼ 3~veG 2f B
    corecore