29 research outputs found

    A note on dominating cycles in 2-connected graphs

    Get PDF
    Let G be a 2-connected graph on n vertices such that d(x) + d(y) + d(z) n for all triples of independent vertices x, y, z. We prove that every longest cycle in G is a dominating cycle unless G is a spanning subgraph of a graph belonging to one of four easily specified classes of graphs

    Cubic graphs with large circumference deficit

    Full text link
    The circumference c(G)c(G) of a graph GG is the length of a longest cycle. By exploiting our recent results on resistance of snarks, we construct infinite classes of cyclically 44-, 55- and 66-edge-connected cubic graphs with circumference ratio c(G)/V(G)c(G)/|V(G)| bounded from above by 0.8760.876, 0.9600.960 and 0.9900.990, respectively. In contrast, the dominating cycle conjecture implies that the circumference ratio of a cyclically 44-edge-connected cubic graph is at least 0.750.75. In addition, we construct snarks with large girth and large circumference deficit, solving Problem 1 proposed in [J. H\"agglund and K. Markstr\"om, On stable cycles and cycle double covers of graphs with large circumference, Disc. Math. 312 (2012), 2540--2544]

    Cycles containing many vertices of large degree

    Get PDF
    AbstractLet G be a 2-connected graph of order n, r a real number and Vr=v ϵ V(G)¦d(v)⩾r. It is shown that G contains a cycle missing at most max {0, n − 2r} vertices of Vr, yielding a common generalization of a result of Dirac and one of Shi Ronghua. A stronger conclusion holds if r⩾13(n+2): G contains a cycle C such that either V(C)⊇Vr or ¦ V(C)¦⩾2r. This theorem extends a result of Häggkvist and Jackson and is proved by first showing that if r⩾13(n+2), then G contains a cycle C for which ¦Vr∩V(C)¦is maximal such that N(x)⊆V(C) whenever x ϵ Vr − V(C) (∗). A result closely related to (∗) is stated and a result of Nash-Williams is extended using (∗)
    corecore