11,833 research outputs found

    Secure Trajectory Planning Against Undetectable Spoofing Attacks

    Full text link
    This paper studies, for the first time, the trajectory planning problem in adversarial environments, where the objective is to design the trajectory of a robot to reach a desired final state despite the unknown and arbitrary action of an attacker. In particular, we consider a robot moving in a two-dimensional space and equipped with two sensors, namely, a Global Navigation Satellite System (GNSS) sensor and a Radio Signal Strength Indicator (RSSI) sensor. The attacker can arbitrarily spoof the readings of the GNSS sensor and the robot control input so as to maximally deviate his trajectory from the nominal precomputed path. We derive explicit and constructive conditions for the existence of undetectable attacks, through which the attacker deviates the robot trajectory in a stealthy way. Conversely, we characterize the existence of secure trajectories, which guarantee that the robot either moves along the nominal trajectory or that the attack remains detectable. We show that secure trajectories can only exist between a subset of states, and provide a numerical mechanism to compute them. We illustrate our findings through several numerical studies, and discuss that our methods are applicable to different models of robot dynamics, including unicycles. More generally, our results show how control design affects security in systems with nonlinear dynamics.Comment: Accepted for publication in Automatic

    Modeling and Detecting False Data Injection Attacks against Railway Traction Power Systems

    Get PDF
    Modern urban railways extensively use computerized sensing and control technologies to achieve safe, reliable, and well-timed operations. However, the use of these technologies may provide a convenient leverage to cyber-attackers who have bypassed the air gaps and aim at causing safety incidents and service disruptions. In this paper, we study false data injection (FDI) attacks against railways' traction power systems (TPSes). Specifically, we analyze two types of FDI attacks on the train-borne voltage, current, and position sensor measurements - which we call efficiency attack and safety attack -- that (i) maximize the system's total power consumption and (ii) mislead trains' local voltages to exceed given safety-critical thresholds, respectively. To counteract, we develop a global attack detection (GAD) system that serializes a bad data detector and a novel secondary attack detector designed based on unique TPS characteristics. With intact position data of trains, our detection system can effectively detect the FDI attacks on trains' voltage and current measurements even if the attacker has full and accurate knowledge of the TPS, attack detection, and real-time system state. In particular, the GAD system features an adaptive mechanism that ensures low false positive and negative rates in detecting the attacks under noisy system measurements. Extensive simulations driven by realistic running profiles of trains verify that a TPS setup is vulnerable to the FDI attacks, but these attacks can be detected effectively by the proposed GAD while ensuring a low false positive rate.Comment: IEEE/IFIP DSN-2016 and ACM Trans. on Cyber-Physical System

    Warfighting for cyber deterrence: a strategic and moral imperative

    Get PDF
    Theories of cyber deterrence are developing rapidly. However, the literature is missing an important ingredient—warfighting for deterrence. This controversial idea, most commonly associated with nuclear strategy during the later stages of the Cold War, affords a number of advantages. It provides enhanced credibility for deterrence, offers means to deal with deterrence failure (including intrawar deterrence and damage limitation), improves compliance with the requirements of just war and ultimately ensures that strategy continues to function in the post-deterrence environment. This paper assesses whether a warfighting for deterrence approach is suitable for the cyber domain. In doing so, it challenges the notion that warfighting concepts are unsuitable for operations in cyberspace. To do this, the work constructs a conceptual framework that is then applied to cyber deterrence. It is found that all of the advantages of taking a warfighting stance apply to cyber operations. The paper concludes by constructing a warfighting model for cyber deterrence. This model includes passive and active defences and cross-domain offensive capabilities. The central message of the paper is that a theory of victory (strategy) must guide the development of cyber deterrence

    Information Structure Design in Team Decision Problems

    Full text link
    We consider a problem of information structure design in team decision problems and team games. We propose simple, scalable greedy algorithms for adding a set of extra information links to optimize team performance and resilience to non-cooperative and adversarial agents. We show via a simple counterexample that the set function mapping additional information links to team performance is in general not supermodular. Although this implies that the greedy algorithm is not accompanied by worst-case performance guarantees, we illustrate through numerical experiments that it can produce effective and often optimal or near optimal information structure modifications
    • …
    corecore