1,066 research outputs found

    Noncrossing partitions and the shard intersection order

    Get PDF
    We define a new lattice structure on the elements of a finite Coxeter group W. This lattice, called the shard intersection order, is weaker than the weak order and has the noncrossing partition lattice NC(W) as a sublattice. The new construction of NC(W) yields a new proof that NC(W) is a lattice. The shard intersection order is graded and its rank generating function is the W-Eulerian polynomial. Many order-theoretic properties of the shard intersection order, like Mobius number, number of maximal chains, etc., are exactly analogous to the corresponding properties of NC(W). There is a natural dimension-preserving bijection between simplices in the order complex of the shard intersection order (i.e. chains in the shard intersection order) and simplices in a certain pulling triangulation of the W-permutohedron. Restricting the bijection to the order complex of NC(W) yields a bijection to simplices in a pulling triangulation of the W-associahedron. The shard intersection order is defined indirectly via the polyhedral geometry of the reflecting hyperplanes of W. Indeed, most of the results of the paper are proven in the more general setting of simplicial hyperplane arrangements.Comment: 44 pages, 15 figure

    The Order Dimension of the Poset of Regions in a Hyperplane Arrangement

    Get PDF
    We show that the order dimension of the weak order on a Coxeter group of type A, B or D is equal to the rank of the Coxeter group, and give bounds on the order dimensions for the other finite types. This result arises from a unified approach which, in particular, leads to a simpler treatment of the previously known cases, types A and B. The result for weak orders follows from an upper bound on the dimension of the poset of regions of an arbitrary hyperplane arrangement. In some cases, including the weak orders, the upper bound is the chromatic number of a certain graph. For the weak orders, this graph has the positive roots as its vertex set, and the edges are related to the pairwise inner products of the roots.Comment: Minor changes, including a correction and an added figure in the proof of Proposition 2.2. 19 pages, 6 figure

    Lattice congruences of the weak order

    Full text link
    We study the congruence lattice of the poset of regions of a hyperplane arrangement, with particular emphasis on the weak order on a finite Coxeter group. Our starting point is a theorem from a previous paper which gives a geometric description of the poset of join-irreducibles of the congruence lattice of the poset of regions in terms of certain polyhedral decompositions of the hyperplanes. For a finite Coxeter system (W,S) and a subset K of S, let \eta_K:w \mapsto w_K be the projection onto the parabolic subgroup W_K. We show that the fibers of \eta_K constitute the smallest lattice congruence with 1\equiv s for every s\in(S-K). We give an algorithm for determining the congruence lattice of the weak order for any finite Coxeter group and for a finite Coxeter group of type A or B we define a directed graph on subsets or signed subsets such that the transitive closure of the directed graph is the poset of join-irreducibles of the congruence lattice of the weak order.Comment: 26 pages, 4 figure

    Hyperplane Arrangements with Large Average Diameter

    Full text link
    The largest possible average diameter of a bounded cell of a simple hyperplane arrangement is conjectured to be not greater than the dimension. We prove that this conjecture holds in dimension 2, and is asymptotically tight in fixed dimension. We give the exact value of the largest possible average diameter for all simple arrangements in dimension 2, for arrangements having at most the dimension plus 2 hyperplanes, and for arrangements having 6 hyperplanes in dimension 3. In dimension 3, we give lower and upper bounds which are both asymptotically equal to the dimension

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point pPp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)11/(d1)log2/(d1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n11/(d1)k1/d(d1)log2/(d1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains wn/2w \leq n/2 points of PP on one side, crosses O(n11/(d1)w1/d(d1)log2/(d1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nloglogn)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n11/(d1)k1/d(d1)(log(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size
    corecore