21 research outputs found

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point pPp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)11/(d1)log2/(d1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n11/(d1)k1/d(d1)log2/(d1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains wn/2w \leq n/2 points of PP on one side, crosses O(n11/(d1)w1/d(d1)log2/(d1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nloglogn)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n11/(d1)k1/d(d1)(log(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size

    Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

    Get PDF
    We consider the problem of finding a small hitting set in an infinite range space F=(Q,R) of bounded VC-dimension. We show that, under reasonably general assumptions, the infinite-dimensional convex relaxation can be solved (approximately) efficiently by multiplicative weight updates. As a consequence, we get an algorithm that finds, for any delta>0, a set of size O(s_F(z^*_F)) that hits (1-delta)-fraction of R (with respect to a given measure) in time proportional to log(1/delta), where s_F(1/epsilon) is the size of the smallest epsilon-net the range space admits, and z^*_F is the value of the fractional optimal solution. This exponentially improves upon previous results which achieve the same approximation guarantees with running time proportional to poly(1/delta). Our assumptions hold, for instance, in the case when the range space represents the visibility regions of a polygon in the plane, giving thus a deterministic polynomial-time O(log z^*_F)-approximation algorithm for guarding (1-delta)-fraction of the area of any given simple polygon, with running time proportional to polylog(1/delta)

    Lower Bounds for Semialgebraic Range Searching and Stabbing Problems

    Get PDF
    In the semialgebraic range searching problem, we are to preprocess nn points in Rd\mathbb{R}^d s.t. for any query range from a family of constant complexity semialgebraic sets, all the points intersecting the range can be reported or counted efficiently. When the ranges are composed of simplices, the problem can be solved using S(n)S(n) space and with Q(n)Q(n) query time with S(n)Qd(n)=O~(nd)S(n)Q^d(n) = \tilde{O}(n^d) and this trade-off is almost tight. Consequently, there exists low space structures that use O~(n)\tilde{O}(n) space with O(n11/d)O(n^{1-1/d}) query time and fast query structures that use O(nd)O(n^d) space with O(logdn)O(\log^{d} n) query time. However, for the general semialgebraic ranges, only low space solutions are known, but the best solutions match the same trade-off curve as the simplex queries. It has been conjectured that the same could be done for the fast query case but this open problem has stayed unresolved. Here, we disprove this conjecture. We give the first nontrivial lower bounds for semilagebraic range searching and related problems. We show that any data structure for reporting the points between two concentric circles with Q(n)Q(n) query time must use S(n)=Ω(n3o(1)/Q(n)5)S(n)=\Omega(n^{3-o(1)}/Q(n)^5) space, meaning, for Q(n)=O(logO(1)n)Q(n)=O(\log^{O(1)}n), Ω(n3o(1))\Omega(n^{3-o(1)}) space must be used. We also study the problem of reporting the points between two polynomials of form Y=i=0ΔaiXiY=\sum_{i=0}^\Delta a_i X^i where a0,,aΔa_0, \cdots, a_\Delta are given at the query time. We show S(n)=Ω(nΔ+1o(1)/Q(n)Δ2+Δ)S(n)=\Omega(n^{\Delta+1-o(1)}/Q(n)^{\Delta^2+\Delta}). So for Q(n)=O(logO(1)n)Q(n)=O(\log^{O(1)}n), we must use Ω(nΔ+1o(1))\Omega(n^{\Delta+1-o(1)}) space. For the dual semialgebraic stabbing problems, we show that in linear space, any data structure that solves 2D ring stabbing must use Ω(n2/3)\Omega(n^{2/3}) query time. This almost matches the linearization upper bound. For general semialgebraic slab stabbing problems, again, we show an almost tight lower bounds.Comment: Submitted to SoCG'21; this version: readjust the table and other minor change

    A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

    Get PDF
    We show that the k-SUM problem can be solved by a linear decision tree of depth O(n^2 log^2 n),improving the recent bound O(n^3 log^3 n) of Cardinal et al. Our bound depends linearly on k, and allows us to conclude that the number of linear queries required to decide the n-dimensional Knapsack or SubsetSum problems is only O(n^3 log n), improving the currently best known bounds by a factor of n. Our algorithm extends to the RAM model, showing that the k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above bound on the number of linear queries. Our approach relies on a new point-location mechanism, exploiting "Epsilon-cuttings" that are based on vertical decompositions in hyperplane arrangements in high dimensions. A major side result of the analysis in this paper is a sharper bound on the complexity of the vertical decomposition of such an arrangement (in terms of its dependence on the dimension). We hope that this study will reveal further structural properties of vertical decompositions in hyperplane arrangements

    Efficient NC algorithms for set cover with applications to learning and geometry

    Get PDF
    In this paper we give the first NC approximation algorithms for the unweighted and weighted set cover problems. Our algorithms use a linear number of processors and give a cover that has at most log n times the optimal size/weight, thus matching the performance of the best sequential algorithms. We apply our set cover algorithm to learning theory, giving an NC algorithm to learn the concept class obtained by taking the closure under finite union or finite intersection of any concept class of finite VC-dimension that has an NC hypothesis finder. In addition, we give a linear-processor NC algorithm for a variant of the set cover problem first proposed by Chazelle and Friedman and use it to obtain NC algorithms for several problems in computational geometry

    Effizient algorithms for generalized intersection searching on non-iso-oriented objects

    Get PDF
    In a generalized intersection searching problem, a set SS of colored geometric objects is to be preprocessed so that, given a query object qq, the distinct colors of the objects of SS that are intersected by qq can be reported or counted efficiently. These problems generalize the well-studied standard intersection searching problems and are rich in applications. Unfortunately, the solutions known for the standard problems do not yield efficient solutions to the generalized problems. Recently, efficient solutions have been given for generalized problems where the input and query objects are iso-oriented, i.e., axes-parallel, or where the color classes satisfy additional properties, e.g., connectedness. In this paper, efficient algorithms are given for several generalized problems involving non-iso-oriented objects. These problems include: generalized halfspace range searching in Rd{\cal R}^d, for any fixed d2d \geq 2, segment intersection searching, triangle stabbing, and triangle range searching in R2{\cal R}^2. The techniques used include: computing suitable sparse representations of the input, persistent data structures, and filtering search

    Fast algorithms for collision and proximity problems involving moving geometric objects

    No full text
    Consider a set of geometric objects, such as points, line segments, or axes-parallel hyperrectangles in \IR^d, that move with constant but possibly different velocities along linear trajectories. Efficient algorithms are presented for several problems defined on such objects, such as determining whether any two objects ever collide and computing the minimum inter-point separation or minimum diameter that ever occurs. The strategy used involves reducing the given problem on moving objects to a different problem on a set of static objects, and then solving the latter problem using techniques based on sweeping, orthogonal range searching, simplex composition, and parametric search
    corecore