16,627 research outputs found

    HFF-DeepSpace photometric catalogs of the 12 Hubble frontier fields, clusters, and parallels : photometry, photometric redshifts, and stellar masses

    Get PDF
    We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep KS-band imaging at 2.2. mu m from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5. mu m with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0. mu m imaging when available. We introduce the public release of the multi-wavelength (0.2-8 mu m) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target

    Deep-sea image processing

    Get PDF
    High-resolution seafloor mapping often requires optical methods of sensing, to confirm interpretations made from sonar data. Optical digital imagery of seafloor sites can now provide very high resolution and also provides additional cues, such as color information for sediments, biota and divers rock types. During the cruise AT11-7 of the Woods Hole Oceanographic Institution (WHOI) vessel R/V Atlantis (February 2004, East Pacific Rise) visual imagery was acquired from three sources: (1) a digital still down-looking camera mounted on the submersible Alvin, (2) observer-operated 1-and 3-chip video cameras with tilt and pan capabilities mounted on the front of Alvin, and (3) a digital still camera on the WHOI TowCam (Fornari, 2003). Imagery from the first source collected on a previous cruise (AT7-13) to the Galapagos Rift at 86°W was successfully processed and mosaicked post-cruise, resulting in a single image covering area of about 2000 sq.m, with the resolution of 3 mm per pixel (Rzhanov et al., 2003). This paper addresses the issues of the optimal acquisition of visual imagery in deep-seaconditions, and requirements for on-board processing. Shipboard processing of digital imagery allows for reviewing collected imagery immediately after the dive, evaluating its importance and optimizing acquisition parameters, and augmenting acquisition of data over specific sites on subsequent dives.Images from the deepsea power and light (DSPL) digital camera offer the best resolution (3.3 Mega pixels) and are taken at an interval of 10 seconds (determined by the strobe\u27s recharge rate). This makes images suitable for mosaicking only when Alvin moves slowly (≪1/4 kt), which is not always possible for time-critical missions. Video cameras provided a source of imagery more suitable for mosaicking, despite its inferiority in resolution. We discuss required pre-processing and imageenhancement techniques and their influence on the interpretation of mosaic content. An algorithm for determination of camera tilt parameters from acquired imagery is proposed and robustness conditions are discussed

    Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth vs. Resolution

    Get PDF
    We present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field (Giavalisco et al. 2004) from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of data (315 images with 5-6 mins exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM \lesssim0.8"), which constitute \sim10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM \lesssim1.8" (\sim94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are \sim90% complete to UABU_{AB} 26\lesssim26. Fainter than UABU_{AB}\sim 27, the object counts from the optimal-resolution image start to drop-off dramatically (90% between UABU_{AB} = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity (μUAB\mu^{AB}_{U}\lesssim 32 mag arcsec2^{-2}) show a more gradual drop (10% between UABU_{AB} \simeq 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. Finally, we find - for 220 brighter galaxies with UABU_{AB}\lesssim 24 mag - only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to μUAB\mu^{AB}_{U}\lesssim 32 mag arcsec2^{-2}. In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light.Comment: 24 pages, 14 figures, submitted to PASP, comments welcom

    The ATESP Radio Survey II. The Source Catalogue

    Get PDF
    This paper is part of a series reporting the results of the Australia Telescope ESO Slice Project (ATESP) radio survey obtained at 1400 MHz with the Australia Telescope Compact Array (ATCA) over the region covered by the ESO Slice Project (ESP) galaxy redshift survey. The survey consists of 16 radio mosaics with ~8"x14" resolution and uniform sensitivity (1sigma noise level ~79 microJy) over the whole area of the ESP redshift survey (~26 sq. degrees at decl. -40 degr). Here we present the catalogue derived from the ATESP survey. We detected 2960 distinct radio sources down to a flux density limit of ~0.5 mJy (6sigma), 1402 being sub-mJy sources. We describe in detail the procedure followed for the source extraction and parameterization. The internal accuracy of the source parameters was tested with Monte Carlo simulations and possible systematic effects (e.g. bandwidth smearing) have been quantified.Comment: 14 pages, 14 Postscript figures, Accepted for publication in A&A Suppl. Corrected typos and added Journal Referenc

    WINGS: a WIde-field nearby Galaxy-cluster survey III. Deep near-infrared photometry of 28 nearby clusters

    Full text link
    Context. This is the third paper of a series devoted to the WIde-field Nearby Galaxy-cluster Survey (WINGS).WINGS is a long term project aimed at gathering wide-field, multiband imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected nearby clusters (0.04<z<0.07) located far from the galactic plane (b>20deg). The main goal of this project is to establish a local reference sample for evolutionary studies of galaxies and galaxy clusters. Aims. This paper presents the near-infrared (J,K) photometric catalogs of 28 clusters of the WINGS sample and describes the procedures followed to construct them. Methods. The raw data has been reduced at CASU and special care has been devoted to the final coadding, drizzling technique, astrometric solution and magnitude calibration for the WFCAM pipeline processed data. We have constructed the photometric catalogs based on the final calibrated coadded mosaics (0.79 deg2) in J (19 clusters) and K (27 clusters) bands. A customized interactive pipeline has been used to clean the catalogs and to make mock images for photometric errors and completeness estimates. Results. We provide deep near-infrared photometric catalogs (90% complete in detection rate at total magnitudes J =20.5, K =19.4, and in classification rate at J = 19.5 and K = 18.5), giving positions, geometrical parameters, total and aperture magnitudes for all detected sources. For each field we classify the detected sources as stars, galaxies and objects of "unknown" nature.Comment: Published by A&A501.851 - 15 pages, 3 tables, 13 figures. Catalogs will be available via CDS and http://web.oapd.inaf.it/wing

    Automated pebble mosaic stylization of images

    Get PDF
    Digital mosaics have usually used regular tiles, simulating the historical "tessellated" mosaics. In this paper, we present a method for synthesizing pebble mosaics, a historical mosaic style in which the tiles are rounded pebbles. We address both the tiling problem, where pebbles are distributed over the image plane so as to approximate the input image content, and the problem of geometry, creating a smooth rounded shape for each pebble. We adapt SLIC, simple linear iterative clustering, to obtain elongated tiles conforming to image content, and smooth the resulting irregular shapes into shapes resembling pebble cross-sections. Then, we create an interior and exterior contour for each pebble and solve a Laplace equation over the region between them to obtain height-field geometry. The resulting pebble set approximates the input image while presenting full geometry that can be rendered and textured for a highly detailed representation of a pebble mosaic

    CfAIR2: Near Infrared Light Curves of 94 Type Ia Supernovae

    Get PDF
    CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the supernova cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.Comment: 31 pages, 15 figures, 10 tables. Accepted to ApJS. v2 modified to more closely match journal versio

    Galaxy Formation In The Reionization Epoch As Hinted By Wide Field Camera 3 Observations Of The Hubble Ultra Deep Field

    Full text link
    We present a large sample of candidate galaxies at z~7--10, selected in the HUDF using the new observations made by the HST/WFC3. Our sample is composed of 20 z-dropouts, 15 Y-dropouts, and 20 J-dropouts. The surface densities of the z-dropouts are close to what predicted by earlier studies, however, those of the Y- and J-dropouts are quite unexpected. While no Y- or J-dropouts have been found at AB < 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z~7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the LFs at z~8 and 10. As compared to their counterpart at z~7, here L* decreases by ~ 6.5x and Phi* increases by 17--90x. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these LFs are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z~10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z~10, rapidly reach the minimum at z~7, and start to rise again towards z~6. In this scenario, the majority of the stellar mass that the universe assembled through the reionization epoch seems still undetected by current observations at z~6. [Abridged]Comment: accepted for publication in Research in Astronomy and Astrophysic
    corecore