396 research outputs found

    The predictor-adaptor paradigm : automation of custom layout by flexible design

    Get PDF

    Development of the detector control system for the COMPASS detector at CERN

    Get PDF
    This document describes the implementation of system control software for the COMPASS experiment at CERN. This work concentrates on the GEM and silicon detectors, but it also includes parts that are generally useful for all kinds of detectors. The only prerequisites were the PVSS II SCADA-system and the JCOP PVSS framework distributed by ITCO at CERN. To achieve the given aims there was work to do both on a C++ framework called SLiC for hardware access and on top of the JCOP framework to customise it for the special needs of the GEM and silicon detectors

    Initial detailed routing algorithms

    Get PDF
    In this work, we present a study of the problem of routing in the context of the VLSI physical synthesis flow. We study the fundamental routing algorithms such as maze routing, A*, and Steiner tree-based algorithms, as well as some global routing algorithms, namely FastRoute 4.0 and BoxRouter 2.0. We dissect some of the major state of the art initial detailed routing tools, such as RegularRoute, TritonRoute, SmartDR and Dr.CU 2.0. We also propose an initial detailed routing flow, and present an implementation of the proposed routing flow, with a track assignment technique that models the problem as an instance of the maximum independent weighted set (MWIS) and utilizes integer linear programming (ILP) as a solver. The implementation of the proposed initial detailed routing flow also includes an implementation of multiple-source and multiple-target A* for terminal andnet connection with adjustable rules and weights. Finally, we also present a study of the results obtained by the implementation of the proposed initial detailed routing flow and a comparison with the ISPD 2019 contest winners, considering the ISPD 2019 and benchmark suite and evaluation tools.Neste trabalho, apresentamos um estudo do problema de roteamento no contexto do fluxo de síntese física de circuitos integrados VLSI. Nós estudamos algoritmos de roteamento fundamentais como roteamento de labirinto, A* e baseados em árvores de Steiner, além de alguns algoritmos de roteamento global como FastRoute 4.0 e BoxRouter 2.0. Nós dissecamos alguns dos principais trabalhos de roteamento detalhado inicial do estado da arte, como RegularRoute, TritonRoute, SmartDR e Dr.CU 2.0. Também propomos um fluxo de roteamento detalhado inicial, e apresentamos uma implementação do fluxo de roteametno proposto, com uma técnica de assinalamento de trilhas que modela o problema como uma instância do problema do conjunto independente de peso máximo e usa programação linear inteira como um resolvedor. A implementação do fluxo de rotemaento detalhado inicial proposto também inclui uma implementação de um A* com múltiplas fontes e múltiplos destinos para conexão de terminais e redes, com regras e pesos ajustáveis. Por fim, nós apresentamos um estudo dos resultados obtidos pela implementação do fluxo de roteamento detalhado inicial proposto e comparamos com os vencedores do ISPD 2019 contest considerando a suíte de teste e ferramentas de avaliação do ISPD 2019

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    The 9th Conference of PhD Students in Computer Science

    Get PDF

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems
    corecore