15,678 research outputs found

    Noncyclic geometric changes of quantum states

    Full text link
    Non-Abelian quantum holonomies, i.e., unitary state changes solely induced by geometric properties of a quantum system, have been much under focus in the physics community as generalizations of the Abelian Berry phase. Apart from being a general phenomenon displayed in various subfields of quantum physics, the use of holonomies has lately been suggested as a robust technique to obtain quantum gates; the building blocks of quantum computers. Non-Abelian holonomies are usually associated with cyclic changes of quantum systems, but here we consider a generalization to noncyclic evolutions. We argue that this open-path holonomy can be used to construct quantum gates. We also show that a structure of partially defined holonomies emerges from the open-path holonomy. This structure has no counterpart in the Abelian setting. We illustrate the general ideas using an example that may be accessible to tests in various physical systems.Comment: Extended version, new title, journal reference adde

    Random Unitary Evolution Model of Quantum Darwinism with pure decoherence

    Full text link
    We study the behavior of Quantum Darwinism (Zurek, [8]) within the iterative, random unitary operations qubit-model of pure decoherence (Novotny et al, [6]). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.Comment: 18 pages, 7 figure

    Entanglement of bosonic modes of nonplanar molecules

    Full text link
    Entanglement of bosonic modes of material oscillators is studied in the context of two bilinearly coupled, nonlinear oscillators. These oscillators are realizable in the vibrational-cum-bending motions of C-H bonds in dihalomethanes. The bilinear coupling gives rise to invariant subspaces in the Hilbert space of the two oscillators. The number of separable states in any invariant subspace is one more than the dimension of the space. The dynamics of the oscillators when the initial state belongs to an invariant subspace is studied. In particular, the dynamics of the system when the initial state is such that the total energy is concentrated in one of the modes is studied and compared with the evolution of the system when the initial state is such wherein the modes share the total energy. The dynamics of quantities such as entropy, mean of number of quanta in the two modes and variances in the quadratures of the two modes are studied. Possibility of generating maximally entangled states is indicated.Comment: 21 pages, 6 figure

    Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces

    Full text link
    Universal bi-Hamiltonian hierarchies of group-invariant (multicomponent) soliton equations are derived from non-stretching geometric curve flows \map(t,x) in Riemannian symmetric spaces M=G/HM=G/H, including compact semisimple Lie groups M=KM=K for G=K×KG=K\times K, H=diagGH={\rm diag} G. The derivation of these soliton hierarchies utilizes a moving parallel frame and connection 1-form along the curve flows, related to the Klein geometry of the Lie group GHG\supset H where HH is the local frame structure group. The soliton equations arise in explicit form from the induced flow on the frame components of the principal normal vector N=\covder{x}\mapder{x} along each curve, and display invariance under the equivalence subgroup in HH that preserves the unit tangent vector T=\mapder{x} in the framing at any point xx on a curve. Their bi-Hamiltonian integrability structure is shown to be geometrically encoded in the Cartan structure equations for torsion and curvature of the parallel frame and its connection 1-form in the tangent space T_\map M of the curve flow. The hierarchies include group-invariant versions of sine-Gordon (SG) and modified Korteweg-de Vries (mKdV) soliton equations that are found to be universally given by curve flows describing non-stretching wave maps and mKdV analogs of non-stretching Schrodinger maps on G/HG/H. These results provide a geometric interpretation and explicit bi-Hamiltonian formulation for many known multicomponent soliton equations. Moreover, all examples of group-invariant (multicomponent) soliton equations given by the present geometric framework can be constructed in an explicit fashion based on Cartan's classification of symmetric spaces.Comment: Published version, with a clarification to Theorem 4.5 and a correction to the Hamiltonian flow in Proposition 5.1

    Non-Abelian generalization of off-diagonal geometric phases

    Full text link
    If a quantum system evolves in a noncyclic fashion the corresponding geometric phase or holonomy may not be fully defined. Off-diagonal geometric phases have been developed to deal with such cases. Here, we generalize these phases to the non-Abelian case, by introducing off-diagonal holonomies that involve evolution of more than one subspace of the underlying Hilbert space. Physical realizations of the off-diagonal holonomies in adiabatic evolution and interferometry are put forward.Comment: Additional material, journal reference adde

    Non-adiabatic holonomic quantum computation in linear system-bath coupling

    Full text link
    Non-adiabatic holonomic quantum computation in decoherence-free subspaces protects quantum information from control imprecisions and decoherence. For the non-collective decoherence that each qubit has its own bath, we show the implementations of two non-commutable holonomic single-qubit gates and one holonomic nontrivial two-qubit gate that compose a universal set of non-adiabatic holonomic quantum gates in decoherence-free-subspaces of the decoupling group, with an encoding rate of N2N\frac{N-2}{N}. The proposed scheme is robust against control imprecisions and the non-collective decoherence, and its non-adiabatic property ensures less operation time. We demonstrate that our proposed scheme can be realized by utilizing only two-qubit interactions rather than many-qubit interactions. Our results reduce the complexity of practical implementation of holonomic quantum computation in experiments. We also discuss the physical implementation of our scheme in coupled microcavities.Comment: 2 figures; accepted by Sci. Re

    Perfect routing of quantum information in regular cavity QED networks

    Full text link
    We introduce a scheme for perfect routing of quantum states and entanglement in regular cavity QED networks. The couplings between the cavities are quasi-uniform and each cavity is doped with a two-level atom. Quasi-uniform couplings leads the system to evolve in invariant subspaces. Combination the evolutions of the system in its invariant subspaces with quite simple local operations on atoms in the networks, gives the perfect routing of quantum states and entanglement through the network. To provide the protocol be robust due to decoherence arisen from photon loss, the field mode of the cavities are only virtually excited
    corecore