3 research outputs found

    Clinical Natural Language Processing in languages other than English: opportunities and challenges

    Get PDF
    Background: Natural language processing applied to clinical text or aimed at a clinical outcome has been thriving in recent years. This paper offers the first broad overview of clinical Natural Language Processing (NLP) for languages other than English. Recent studies are summarized to offer insights and outline opportunities in this area. Main Body We envision three groups of intended readers: (1) NLP researchers leveraging experience gained in other languages, (2) NLP researchers faced with establishing clinical text processing in a language other than English, and (3) clinical informatics researchers and practitioners looking for resources in their languages in order to apply NLP techniques and tools to clinical practice and/or investigation. We review work in clinical NLP in languages other than English. We classify these studies into three groups: (i) studies describing the development of new NLP systems or components de novo, (ii) studies describing the adaptation of NLP architectures developed for English to another language, and (iii) studies focusing on a particular clinical application. Conclusion: We show the advantages and drawbacks of each method, and highlight the appropriate application context. Finally, we identify major challenges and opportunities that will affect the impact of NLP on clinical practice and public health studies in a context that encompasses English as well as other languages

    Cue-based assertion classification for Swedish clinical text-Developing a lexicon for pyConTextSwe

    Get PDF
    AbstractObjectiveThe ability of a cue-based system to accurately assert whether a disorder is affirmed, negated, or uncertain is dependent, in part, on its cue lexicon. In this paper, we continue our study of porting an assertion system (pyConTextNLP) from English to Swedish (pyConTextSwe) by creating an optimized assertion lexicon for clinical Swedish.Methods and materialWe integrated cues from four external lexicons, along with generated inflections and combinations. We used subsets of a clinical corpus in Swedish. We applied four assertion classes (definite existence, probable existence, probable negated existence and definite negated existence) and two binary classes (existence yes/no and uncertainty yes/no) to pyConTextSwe. We compared pyConTextSwe's performance with and without the added cues on a development set, and improved the lexicon further after an error analysis. On a separate evaluation set, we calculated the system's final performance.ResultsFollowing integration steps, we added 454 cues to pyConTextSwe. The optimized lexicon developed after an error analysis resulted in statistically significant improvements on the development set (83% F-score, overall). The system's final F-scores on an evaluation set were 81% (overall). For the individual assertion classes, F-score results were 88% (definite existence), 81% (probable existence), 55% (probable negated existence), and 63% (definite negated existence). For the binary classifications existence yes/no and uncertainty yes/no, final system performance was 97%/87% and 78%/86% F-score, respectively.ConclusionsWe have successfully ported pyConTextNLP to Swedish (pyConTextSwe). We have created an extensive and useful assertion lexicon for Swedish clinical text, which could form a valuable resource for similar studies, and which is publicly available

    COHORT IDENTIFICATION FROM FREE-TEXT CLINICAL NOTES USING SNOMED CT’S SEMANTIC RELATIONS

    Get PDF
    In this paper, a new cohort identification framework that exploits the semantic hierarchy of SNOMED CT is proposed to overcome the limitations of supervised machine learning-based approaches. Eligibility criteria descriptions and free-text clinical notes from the 2018 National NLP Clinical Challenge (n2c2) were processed to map to relevant SNOMED CT concepts and to measure semantic similarity between the eligibility criteria and patients. The eligibility of a patient was determined if the patient had a similarity score higher than a threshold cut-off value, which was established where the best F1 score could be achieved. The performance of the proposed system was evaluated for three eligibility criteria. The current framework’s macro-average F1 score across three eligibility criteria was higher than the previously reported results of the 2018 n2c2 (0.933 vs. 0.889). This study demonstrated that SNOMED CT alone can be leveraged for cohort identification tasks without referring to external textual sources for training.Doctor of Philosoph
    corecore