323 research outputs found

    Towards Practical Access Control and Usage Control on the Cloud using Trusted Hardware

    Get PDF
    Cloud-based platforms have become the principle way to store, share, and synchronize files online. For individuals and organizations alike, cloud storage not only provides resource scalability and on-demand access at a low cost, but also eliminates the necessity of provisioning and maintaining complex hardware installations. Unfortunately, because cloud-based platforms are frequent victims of data breaches and unauthorized disclosures, data protection obliges both access control and usage control to manage user authorization and regulate future data use. Encryption can ensure data security against unauthorized parties, but complicates file sharing which now requires distributing keys to authorized users, and a mechanism that prevents revoked users from accessing or modifying sensitive content. Further, as user data is stored and processed on remote ma- chines, usage control in a distributed setting requires incorporating the local environmental context at policy evaluation, as well as tamper-proof and non-bypassable enforcement. Existing cryptographic solutions either require server-side coordination, offer limited flexibility in data sharing, or incur significant re-encryption overheads on user revocation. This combination of issues are ill-suited within large-scale distributed environments where there are a large number of users, dynamic changes in user membership and access privileges, and resources are shared across organizational domains. Thus, developing a robust security and privacy solution for the cloud requires: fine-grained access control to associate the largest set of users and resources with variable granularity, scalable administration costs when managing policies and access rights, and cross-domain policy enforcement. To address the above challenges, this dissertation proposes a practical security solution that relies solely on commodity trusted hardware to ensure confidentiality and integrity throughout the data lifecycle. The aim is to maintain complete user ownership against external hackers and malicious service providers, without losing the scalability or availability benefits of cloud storage. Furthermore, we develop a principled approach that is: (i) portable across storage platforms without requiring any server-side support or modifications, (ii) flexible in allowing users to selectively share their data using fine-grained access control, and (iii) performant by imposing modest overheads on standard user workloads. Essentially, our system must be client-side, provide end-to-end data protection and secure sharing, without significant degradation in performance or user experience. We introduce NeXUS, a privacy-preserving filesystem that enables cryptographic protection and secure file sharing on existing network-based storage services. NeXUS protects the confidentiality and integrity of file content, as well as file and directory names, while mitigating against rollback attacks of the filesystem hierarchy. We also introduce Joplin, a secure access control and usage control system that provides practical attribute-based sharing with decentralized policy administration, including efficient revocation, multi-domain policies, secure user delegation, and mandatory audit logging. Both systems leverage trusted hardware to prevent the leakage of sensitive material such as encryption keys and access control policies; they are completely client-side, easy to install and use, and can be readily deployed across remote storage platforms without requiring any server-side changes or trusted intermediary. We developed prototypes for NeXUS and Joplin, and evaluated their respective overheads in isolation and within a real-world environment. Results show that both prototypes introduce modest overheads on interactive workloads, and achieve portability across storage platforms, including Dropbox and AFS. Together, NeXUS and Joplin demonstrate that a client-side solution employing trusted hardware such as Intel SGX can effectively protect remotely stored data on existing file sharing services

    Health Access Broker: Secure, Patient-Controlled Management of Personal Health Records in the Cloud

    Full text link
    Secure and privacy-preserving management of Personal Health Records (PHRs) has proved to be a major challenge in modern healthcare. Current solutions generally do not offer patients a choice in where the data is actually stored and also rely on at least one fully trusted element that patients must also trust with their data. In this work, we present the Health Access Broker (HAB), a patient-controlled service for secure PHR sharing that (a) does not impose a specific storage location (uniquely for a PHR system), and (b) does not assume any of its components to be fully secure against adversarial threats. Instead, HAB introduces a novel auditing and intrusion-detection mechanism where its workflow is securely logged and continuously inspected to provide auditability of data access and quickly detect any intrusions.Comment: Copy of the paper accepted at 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac
    corecore