1,185 research outputs found

    Cryptographically Secure Information Flow Control on Key-Value Stores

    Full text link
    We present Clio, an information flow control (IFC) system that transparently incorporates cryptography to enforce confidentiality and integrity policies on untrusted storage. Clio insulates developers from explicitly manipulating keys and cryptographic primitives by leveraging the policy language of the IFC system to automatically use the appropriate keys and correct cryptographic operations. We prove that Clio is secure with a novel proof technique that is based on a proof style from cryptography together with standard programming languages results. We present a prototype Clio implementation and a case study that demonstrates Clio's practicality.Comment: Full version of conference paper appearing in CCS 201

    Capacity: Cryptographically-Enforced In-Process Capabilities for Modern ARM Architectures (Extended Version)

    Full text link
    In-process compartmentalization and access control have been actively explored to provide in-place and efficient isolation of in-process security domains. Many works have proposed compartmentalization schemes that leverage hardware features, most notably using the new page-based memory isolation feature called Protection Keys for Userspace (PKU) on x86. Unfortunately, the modern ARM architecture does not have an equivalent feature. Instead, newer ARM architectures introduced Pointer Authentication (PA) and Memory Tagging Extension (MTE), adapting the reference validation model for memory safety and runtime exploit mitigation. We argue that those features have been underexplored in the context of compartmentalization and that they can be retrofitted to implement a capability-based in-process access control scheme. This paper presents Capacity, a novel hardware-assisted intra-process access control design that embraces capability-based security principles. Capacity coherently incorporates the new hardware security features on ARM that already exhibit inherent characteristics of capability. It supports the life-cycle protection of the domain's sensitive objects -- starting from their import from the file system to their place in memory. With intra-process domains authenticated with unique PA keys, Capacity transforms file descriptors and memory pointers into cryptographically-authenticated references and completely mediates reference usage with its program instrumentation framework and an efficient system call monitor. We evaluate our Capacity-enabled NGINX web server prototype and other common applications in which sensitive resources are isolated into different domains. Our evaluation shows that Capacity incurs a low-performance overhead of approximately 17% for the single-threaded and 13.54% for the multi-threaded webserver.Comment: Accepted at ACM CCS 202

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference
    corecore