50 research outputs found

    Cryptographic reverse firewalls for interactive proof systems

    Get PDF
    We study interactive proof systems (IPSes) in a strong adversarial setting where the machines of *honest parties* might be corrupted and under control of the adversary. Our aim is to answer the following, seemingly paradoxical, questions: - Can Peggy convince Vic of the veracity of an NP statement, without leaking any information about the witness even in case Vic is malicious and Peggy does not trust her computer? - Can we avoid that Peggy fools Vic into accepting false statements, even if Peggy is malicious and Vic does not trust her computer? At EUROCRYPT 2015, Mironov and Stephens-Davidowitz introduced cryptographic reverse firewalls (RFs) as an attractive approach to tackling such questions. Intuitively, a RF for Peggy/Vic is an external party that sits between Peggy/Vic and the outside world and whose scope is to sanitize Peggy's/Vic's incoming and outgoing messages in the face of subversion of her/his computer, e.g. in order to destroy subliminal channels. In this paper, we put forward several natural security properties for RFs in the concrete setting of IPSes. As our main contribution, we construct efficient RFs for different IPSes derived from a large class of Sigma protocols that we call malleable. A nice feature of our design is that it is completely transparent, in the sense that our RFs can be directly applied to already deployed IPSes, without the need to re-implement them

    Subverting Decryption in AEAD

    Get PDF
    This work introduces a new class of Algorithm Substitution Attack (ASA) on Symmetric Encryption Schemes. ASAs were introduced by Bellare, Paterson and Rogaway in light of revelations concerning mass surveillance. An ASA replaces an encryption scheme with a subverted version that aims to reveal information to an adversary engaged in mass surveillance, while remaining undetected by users. Previous work posited that a particular class of AEAD scheme (satisfying certain correctness and uniqueness properties) is resilient against subversion. Many if not all real-world constructions – such as GCM, CCM and OCB – are members of this class. Our results stand in opposition to those prior results. We present a potent ASA that generically applies to any AEAD scheme, is undetectable in all previous frameworks and which achieves successful exfiltration of user keys. We give even more efficient non-generic attacks against a selection of AEAD implementations that are most used in practice. In contrast to prior work, our new class of attack targets the decryption algorithm rather than encryption. We argue that this attack represents an attractive opportunity for a mass surveillance adversary. Our work serves to refine the ASA model and contributes to a series of papers that raises awareness and understanding about what is possible with ASAs

    Protection Against Subversion Corruptions via Reverse Firewalls in the plain Universal Composability Framework

    Get PDF
    While many modern cryptographic primitives have stood the test of time, attacker have already begun to expand their attacks beyond classical cryptanalysis by specifically targeting implementations. One of the most well-documented classes of such attacks are subversion (or substitution) attacks, where the attacker replaces the Implementation of the cryptographic primitive in an undetectable way such that the subverted implementation leaks sensitive information of the user during a protocol execution. The revelations of Snowden have shown that this is not only a dangerous theoretical attack, but an attack deployed by intelligence services. Several possible solutions for protection against these attacks are proposed in current literature. Among the most widely studied ones are cryptographic reverse firewalls that aim to actively remove the covert channel leaking the secret. While different protocols supporting such firewalls have been proposed, they do no guarantee security in the presence of concurrent runs. This situation was resolved by a recent work of Chakraborty et al. (EUROCRYPT 2022) that presented the first UC-model of such firewalls. Their model allows to provide security if a subverted party uses an honest firewall. However, using such a firewall also provides a possible new target for the attacker and in the case that an honest party uses a corrupted firewall, they were not able to prove any security guarantees. Furthermore, their model is quite complex and does not fit into the plain UC model. Hence, the authors needed to reprove fundamental theorems such as the composition theorem. Finally, the high complexity of their model also makes designing corresponding protocols a challenging task, as one also needs to reprove the security of the underlying protocol. In this paper, we present a simpler model capturing cryptographic reverse firewalls in the plain UC model. The simplicity of our model allows to also reason about corrupted firewalls and still maintain strong security guarantees. Furthermore, we resolve the open question by Chakraborty et al. (EUROCRYPT 2022) and by Chakraborty et al. (EUROCRYPT 2023) and present the first direct UC-secure oblivious transfer protocol along with a cryptographic reverse firewall

    Subversion-Resilient Authenticated Encryption without Random Oracles

    Get PDF
    In 2013, the Snowden revelations have shown subversion of cryptographic implementations to be a relevant threat. Since then, the academic community has been pushing the development of models and constructions to defend against adversaries able to arbitrarily subvert cryptographic implementations. To capture these strong capabilities of adversaries, Russell, Tang, Yung, and Zhou (CCS\u2717) proposed CPA-secure encryption in a model that utilizes a trusted party called a watchdog testing an implementation before use to detect potential subversion. This model was used to construct subversion-resilient implementations of primitives such as random oracles by Russell, Tang, Yung, and Zhou (CRYPTO\u2718) or signature schemes by Chow et al. (PKC\u2719) but primitives aiming for a CCA-like security remained elusive in any watchdog model. In this work, we present the first subversion-resilient authenticated encryption scheme with associated data (AEAD) without making use of random oracles. At the core of our construction are subversion-resilient PRFs, which we obtain from weak PRFs in combination with the classical Naor-Reingold transformation. We revisit classical constructions based on PRFs to obtain subversion-resilient MACs, where both tagging and verification are subject to subversion, as well as subversion-resilient symmetric encryption in the form of stream ciphers. Finally, we observe that leveraging the classical Encrypt-then-MAC approach yields subversion-resilient AEAD. Our results are based on the trusted amalgamation model by Russell, Tang, Yung, and Zhou (ASIACRYPT\u2716) and the assumption of honest key generation

    Key Exchange in the Post-Snowden Era: UC Secure Subversion-Resilient PAKE

    Get PDF
    Password-Authenticated Key Exchange (PAKE) allows two parties to establish a common high-entropy secret from a possibly low-entropy pre-shared secret such as a password. In this work, we provide the first PAKE protocol with subversion resilience in the framework of universal composability (UC), where the latter roughly means that UC security still holds even if one of the two parties is malicious and the honest party\u27s code has been subverted (in an undetectable manner). We achieve this result by sanitizing the PAKE protocol from oblivious transfer (OT) due to Canetti et al. (PKC\u2712) via cryptographic reverse firewalls in the UC framework (Chakraborty et al., EUROCRYPT\u2722). This requires new techniques, which help us uncover new cryptographic primitives with sanitation-friendly properties along the way (such as OT, dual-mode cryptosystems, and signature schemes). As an additional contribution, we delve deeper in the backbone of communication required in the subversion-resilient UC framework, extending it to the unauthenticated setting, in line with the work of Barak et al. (CRYPTO\u2705)

    Substitution Attacks against Message Authentication

    Get PDF
    This work introduces Algorithm Substitution Attacks (ASAs) on message authentication schemes. In light of revelations concerning mass surveillance, ASAs were initially introduced by Bellare, Paterson and Rogaway as a novel attack class against the confidentiality of encryption schemes. Such an attack replaces one or more of the regular scheme algorithms with a subverted version that aims to reveal information to an adversary (engaged in mass surveillance), while remaining undetected by users. While most prior work focused on subverting encryption systems, we study options to subvert symmetric message authentication protocols. In particular we provide powerful generic attacks that apply e.g. to HMAC or Carter-Wegman based schemes, inducing only a negligible implementation overhead. As subverted authentication can act as an enabler for subverted encryption (software updates can be manipulated to include replacements of encryption routines), we consider attacks of the new class highly impactful and dangerous

    Subverting Decryption in AEAD

    Get PDF
    This work introduces a new class of Algorithm Substitution Attack (ASA) on Symmetric Encryption Schemes. ASAs were introduced by Bellare, Paterson and Rogaway in light of revelations concerning mass surveillance. An ASA replaces an encryption scheme with a subverted version that aims to reveal information to an adversary engaged in mass surveillance, while remaining undetected by users. Previous work posited that a particular class of AEAD scheme (satisfying certain correctness and uniqueness properties) is resilient against subversion. Many if not all real-world constructions - such as GCM, CCM and OCB - are members of this class. Our results stand in opposition to those prior results. We present a potent ASA that generically applies to any AEAD scheme, is undetectable in all previous frameworks and which achieves successful exfiltration of user keys. We give even more efficient non-generic attacks against a selection of AEAD implementations that are most used in practice.In contrast to prior work, our new class of attack targets the decryption algorithm rather than encryption. We argue that this attack represents an attractive opportunity for a mass surveillance adversary. Our work serves to refine the ASA model and contributes to a series of papers that raises awareness and understanding about what is possible with ASAs
    corecore