193 research outputs found

    Revisiting Shared Data Protection Against Key Exposure

    Full text link
    This paper puts a new light on secure data storage inside distributed systems. Specifically, it revisits computational secret sharing in a situation where the encryption key is exposed to an attacker. It comes with several contributions: First, it defines a security model for encryption schemes, where we ask for additional resilience against exposure of the encryption key. Precisely we ask for (1) indistinguishability of plaintexts under full ciphertext knowledge, (2) indistinguishability for an adversary who learns: the encryption key, plus all but one share of the ciphertext. (2) relaxes the "all-or-nothing" property to a more realistic setting, where the ciphertext is transformed into a number of shares, such that the adversary can't access one of them. (1) asks that, unless the user's key is disclosed, noone else than the user can retrieve information about the plaintext. Second, it introduces a new computationally secure encryption-then-sharing scheme, that protects the data in the previously defined attacker model. It consists in data encryption followed by a linear transformation of the ciphertext, then its fragmentation into shares, along with secret sharing of the randomness used for encryption. The computational overhead in addition to data encryption is reduced by half with respect to state of the art. Third, it provides for the first time cryptographic proofs in this context of key exposure. It emphasizes that the security of our scheme relies only on a simple cryptanalysis resilience assumption for blockciphers in public key mode: indistinguishability from random, of the sequence of diferentials of a random value. Fourth, it provides an alternative scheme relying on the more theoretical random permutation model. It consists in encrypting with sponge functions in duplex mode then, as before, secret-sharing the randomness

    Injective Rank Metric Trapdoor Functions with Homogeneous Errors

    Full text link
    In rank-metric cryptography, a vector from a finite dimensional linear space over a finite field is viewed as the linear space spanned by its entries. The rank decoding problem which is the analogue of the problem of decoding a random linear code consists in recovering a basis of a random noise vector that was used to perturb a set of random linear equations sharing a secret solution. Assuming the intractability of this problem, we introduce a new construction of injective one-way trapdoor functions. Our solution departs from the frequent way of building public key primitives from error-correcting codes where, to establish the security, ad hoc assumptions about a hidden structure are made. Our method produces a hard-to-distinguish linear code together with low weight vectors which constitute the secret that helps recover the inputs.The key idea is to focus on trapdoor functions that take sufficiently enough input vectors sharing the same support. Applying then the error correcting algorithm designed for Low Rank Parity Check (LRPC) codes, we obtain an inverting algorithm that recovers the inputs with overwhelming probability

    Collision Attack on GRINDAHL

    Get PDF
    Hash functions have been among the most scrutinized cryptographic primitives in the previous decade, mainly due to the cryptanalysis breakthroughs on MD-SHA family and the NIST SHA3 competition that followed. GRINDAHL is a hash function proposed at FSE 2007 that inspired several SHA3 candidates. One of its particularities is that it follows the RIJNDAEL design strategy, with an efficiency comparable to SHA2. This paper provides the first cryptanalytic work on this scheme and we show that the 256-bit version of GRINDAHL is not collision resistant. Our attack uses byte-level truncated differentials and leverages a counterintuitive method (reaching an internal state where all bytes are active) in order to ease the construction of good differential paths. Then, by a careful utilization of the freedom degrees inserted every round, and with a work effort of approximatively 21122^{112} hash computations, an attacker can generate a collision for the full 256-bit version of GRINDAHL

    Applications of Key Recovery Cube-attack-like

    Get PDF
    In this paper, we describe a variant of the cube attack with much better-understood Preprocessing Phase, where complexity can be calculated without running the actual experiments and random-like search for the cubes. We apply our method to a few different cryptographic algorithms, showing that the method can be used against a wide range of cryptographic primitives, including hash functions and authenticated encryption schemes. We also show that our key-recovery approach could be a framework for side-channel attacks, where the attacker has to deal with random errors in measurements

    FuLeeca: A Lee-based Signature Scheme

    Get PDF
    In this work we introduce a new code-based signature scheme, called \textsf{FuLeeca}, based on the NP-hard problem of finding codewords of given Lee-weight. The scheme follows the Hash-and-Sign approach applied to quasi-cyclic codes. Similar approaches in the Hamming metric have suffered statistical attacks, which revealed the small support of the secret basis. Using the Lee metric, we are able to thwart such attacks. We use existing hardness results on the underlying problem and study adapted statistical attacks. We propose parameters for \textsf{FuLeeca}~and compare them to an extensive list of proposed post-quantum secure signature schemes including the ones already standardized by NIST. This comparison reveals that \textsf{FuLeeca}~is competitive. For example, for NIST category I, i.e., 160 bit of classical security, we obtain an average signature size of 1100 bytes and public key sizes of 1318 bytes. Comparing the total communication cost, i.e., the sum of the signature and public key size, we see that \textsf{FuLeeca} is only outperformed by Falcon while the other standardized schemes Dilithium and SPHINCS+ show larger communication costs than \textsf{FuLeeca}

    State of the Art in Lightweight Symmetric Cryptography

    Get PDF
    Lightweight cryptography has been one of the hot topics in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a lightweight algorithm is usually designed to satisfy in both the software and the hardware case. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (NIST...) and international (ISO/IEC...) standards are listed. We identified several trends in the design of lightweight algorithms, such as the designers\u27 preference for ARX-based and bitsliced-S-Box-based designs or simpler key schedules. We also discuss more general trade-offs facing the authors of such algorithms and suggest a clearer distinction between two subsets of lightweight cryptography. The first, ultra-lightweight cryptography, deals with primitives fulfilling a unique purpose while satisfying specific and narrow constraints. The second is ubiquitous cryptography and it encompasses more versatile algorithms both in terms of functionality and in terms of implementation trade-offs

    The Usage of Counter Revisited: Second-Preimage Attack on New Russian Standardized Hash Function

    Get PDF
    International audienceStreebog is a new Russian hash function standard. It follows the HAIFA framework as domain extension algorithm and claims to resist recent generic second-preimage attacks with long messages. However, we demonstrate in this article that the specific instantiation of the HAIFA framework used in Streebog makes it weak against such attacks. More precisely, we observe that Streebog makes a rather poor usage of the HAIFA counter input in the compression function, which allows to con-struct second-preimages on the full Streebog-512 with a complexity as low as n × 2 n/2 (namely 2 266) compression function evaluations for long messages. This complexity has to be compared with the expected 2 512 computations bound that an ideal hash function should provide. Our work is a good example that one must be careful when using a design framework for which not all instances are secure. HAIFA helps designers to build a secure hash function, but one should pay attention to the way the counter is handled inside the compression function

    New MILP Modeling: Improved Conditional Cube Attacks on Keccak-based Constructions

    Get PDF
    In this paper, we propose a new MILP modeling to find better or even optimal choices of conditional cubes, under the general framework of conditional cube attacks. These choices generally find new or improved attacks against the keyed constructions based on Keccak permutation and its variants, including Keccak-MAC, KMAC, Keyak, and Ketje, in terms of attack complexities or the number of attacked rounds. Interestingly, conditional cube attacks were applied to round-reduced Keccak-MAC, but not to KMAC despite the great similarity between Keccak-MAC and KMAC, and the fact that KMAC is the NIST standard way of constructing MAC from SHA-3. As examples to demonstrate the effectiveness of our new modeling, we report key recovery attacks against KMAC128 and KMAC256 reduced to 7 and 9 rounds, respectively; the best attack against Lake Keyak with 128-bit key is improved from 6 to 8 rounds in the nonce-respected setting and 9 rounds of Lake Keyak can be attacked if the key size is of 256 bits; attack complexity improvements are found generally on other constructions. Our new model is also applied to Keccak-based full-state keyed sponge and gives a positive answer to the open question proposed by Bertoni et al. whether cube attacks can be extended to more rounds by exploiting full-state absorbing. To verify the correctness of our attacks, reduced-variants of the attacks are implemented and verified on a PC practically. It is remarked that this work does not threaten the security of any full version of the instances analyzed in this paper

    Secure Key Encapsulation Mechanism with Compact Ciphertext and Public Key from Generalized Srivastava code

    Get PDF
    Code-based public key cryptosystems have been found to be an interesting option in the area of Post-Quantum Cryptography. In this work, we present a key encapsulation mechanism (KEM) using a parity check matrix of the Generalized Srivastava code as the public key matrix. Generalized Srivastava codes are privileged with the decoding technique of Alternant codes as they belong to the family of Alternant codes. We exploit the dyadic structure of the parity check matrix to reduce the storage of the public key. Our encapsulation leads to a shorter ciphertext as compared to DAGS proposed by Banegas et al. in Journal of Mathematical Cryptology which also uses Generalized Srivastava code. Our KEM provides IND-CCA security in the random oracle model. Also, our scheme can be shown to achieve post-quantum security in the quantum random oracle model

    Security primitives for ultra-low power sensor nodes in wireless sensor networks

    Get PDF
    The concept of wireless sensor network (WSN) is where tiny devices (sensor nodes), positioned fairly close to each other, are used for sensing and gathering data from its environment and exchange information through wireless connections between these nodes (e.g. sensor nodes distributed through out a bridge for monitoring the mechanical stress level of the bridge continuously). In order to easily deploy a relatively large quantity of sensor nodes, the sensor nodes are typically designed for low price and small size, thereby causing them to have very limited resources available (e.g. energy, processing power). Over the years, different security (cryptographic) primitives have been proposed and refined aiming at utilizing modern processor’s power e.g. 32-bit or 64-bit operation, architecture such as MMX (Multi Media Extension) and etc. In other words, security primitives have targeted at high-end systems (e.g. desktop or server) in software implementations. Some hardware-oriented security primitives have also been proposed. However, most of them have been designed aiming only at large message and high speed hashing, with no power consumption or other resources (such as memory space) taken into considerations. As a result, security mechanisms for ultra-low power (<500µW) devices such as the wireless sensor nodes must be carefully selected or designed with their limited resources in mind. The objective of this project is to provide implementations of security primitives (i.e. encryption and authentication) suitable to the WSN environment, where resources are extremely limited. The goal of the project is to provide an efficient building block on which the design of WSN secure routing protocols can be based on, so it can relieve the protocol designers from having to design everything from scratch. This project has provided three main contributions to the WSN field. Provides analysis of different tradeoffs between cryptographic security strength and performances, which then provide security primitives suitable for the needs in a WSN environment. Security primitives form the link layer security and act as building blocks for higher layer protocols i.e. secure routing protocol. Implements and optimizes several security primitives in a low-power microcontroller (TI MSP430F1232) with very limited resources (256 bytes RAM, 8KB flash program memory). The different security primitives are compared according to the number of CPU cycles required per byte processed, specific architectures required (e.g. multiplier, large bit shift) and resources (RAM, ROM/flash) required. These comparisons assist in the evaluation of its corresponding energy consumption, and thus the applicability to wireless sensor nodes. Apart from investigating security primitives, research on various security protocols designed for WSN have also been conducted in order to optimize the security primitives for the security protocols design trend. Further, a new link layer security protocol using optimized security primitives is also proposed. This new protocol shows an improvement over the existing link layer security protocols. Security primitives with confidentiality and authenticity functions are implemented in the TinyMote sensor nodes from the Technical University of Vienna in a wireless sensor network. This is to demonstrate the practicality of the designs of this thesis in a real-world WSN environment. This research has achieved ultra-low power security primitives in wireless sensor network with average power consumption less than 3.5 µW (at 2 second packet transmission interval) and 700 nW (at 5 second packet transmission interval). The proposed link layer security protocol has also shown improvements over existing protocols in both security and power consumption.Dissertation (MEng (Computer Engineering))--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte
    corecore