81 research outputs found

    Cryptanalysis of an Encryption Scheme Based on Blind Source Separation

    Get PDF
    Recently Lin et al. proposed a method of using the underdetermined BSS (blind source separation) problem to realize image and speech encryption. In this paper, we give a cryptanalysis of this BSS-based encryption and point out that it is not secure against known/chosen-plaintext attack and chosen-ciphertext attack. In addition, there exist some other security defects: low sensitivity to part of the key and the plaintext, a ciphertext-only differential attack, divide-and-conquer (DAC) attack on part of the key. We also discuss the role of BSS in Lin et al.'s efforts towards cryptographically secure ciphers.Comment: 8 pages, 10 figures, IEEE forma

    A Review of Analog Audio Scrambling Methods for Residual Intelligibility

    Get PDF
    In this paper, a review of the techniques available in different categories of audio scrambling schemes is done with respect to Residual Intelligibility. According to Shannon's secure communication theory, for the residual intelligibility to be zero the scrambled signal must represent a white signal. Thus the scrambling scheme that has zero residual intelligibility is said to be highly secure. Many analog audio scrambling algorithms that aim to achieve lower levels of residual intelligibility are available. In this paper a review of all the existing analog audio scrambling algorithms proposed so far and their properties and limitations has been presented. The aim of this paper is to provide an insight for evaluating various analog audio scrambling schemes available up-to-date. The review shows that the algorithms have their strengths and weaknesses and there is no algorithm that satisfies all the factors to the maximum extent. Keywords: residual Intelligibility, audio scrambling, speech scramblin

    Image Encryption Based on Diffusion and Multiple Chaotic Maps

    Full text link
    In the recent world, security is a prime important issue, and encryption is one of the best alternative way to ensure security. More over, there are many image encryption schemes have been proposed, each one of them has its own strength and weakness. This paper presents a new algorithm for the image encryption/decryption scheme. This paper is devoted to provide a secured image encryption technique using multiple chaotic based circular mapping. In this paper, first, a pair of sub keys is given by using chaotic logistic maps. Second, the image is encrypted using logistic map sub key and in its transformation leads to diffusion process. Third, sub keys are generated by four different chaotic maps. Based on the initial conditions, each map may produce various random numbers from various orbits of the maps. Among those random numbers, a particular number and from a particular orbit are selected as a key for the encryption algorithm. Based on the key, a binary sequence is generated to control the encryption algorithm. The input image of 2-D is transformed into a 1- D array by using two different scanning pattern (raster and Zigzag) and then divided into various sub blocks. Then the position permutation and value permutation is applied to each binary matrix based on multiple chaos maps. Finally the receiver uses the same sub keys to decrypt the encrypted images. The salient features of the proposed image encryption method are loss-less, good peak signal-to-noise ratio (PSNR), Symmetric key encryption, less cross correlation, very large number of secret keys, and key-dependent pixel value replacement.Comment: 14 pages,9 figures and 5 tables; http://airccse.org/journal/jnsa11_current.html, 201

    On the security of permutation-only image encryption schemes

    Get PDF
    Permutation is a commonly used primitive in multimedia (image/video) encryption schemes, and many permutation-only algorithms have been proposed in recent years for the protection of multimedia data. In permutation-only image ciphers, the entries of the image matrix are scrambled using a permutation mapping matrix which is built by a pseudo-random number generator. The literature on the cryptanalysis of image ciphers indicates that the permutation-only image ciphers are insecure against ciphertext-only attacks and/or known/chosenplaintext attacks. However, the previous studies have not been able to ensure the correct retrieval of the complete plaintext elements. In this paper, we revisited the previous works on cryptanalysis of permutation-only image encryption schemes and made the cryptanalysis work on chosen-plaintext attacks complete and more efficient. We proved that in all permutationonly image ciphers, regardless of the cipher structure, the correct permutation mapping is recovered completely by a chosenplaintext attack. To the best of our knowledge, for the first time, this paper gives a chosen-plaintext attack that completely determines the correct plaintext elements using a deterministic method. When the plain-images are of size M × N and with L different color intensities, the number n of required chosen plain-images to break the permutation-only image encryption algorithm is n = logL(MN). The complexity of the proposed attack is O (n · M N) which indicates its feasibility in a polynomial amount of computation time. To validate the performance of the proposed chosen-plaintext attack, numerous experiments were performed on two recently proposed permutation-only image/video ciphers. Both theoretical and experimental results showed that the proposed attack outperforms the state-of-theart cryptanalytic methods

    Recovering Sign Bits of DCT Coefficients in Digital Images as an Optimization Problem

    Full text link
    Recovering unknown, missing, damaged, distorted or lost information in DCT coefficients is a common task in multiple applications of digital image processing, including image compression, selective image encryption, and image communications. This paper investigates recovery of a special type of information in DCT coefficients of digital images: sign bits. This problem can be modelled as a mixed integer linear programming (MILP) problem, which is NP-hard in general. To efficiently solve the problem, we propose two approximation methods: 1) a relaxation-based method that convert the MILP problem to a linear programming (LP) problem; 2) a divide-and-conquer method which splits the target image into sufficiently small regions, each of which can be more efficiently solved as an MILP problem, and then conducts a global optimization phase as a smaller MILP problem or an LP problem to maximize smoothness across different regions. To the best of our knowledge, we are the first who considered how to use global optimization to recover sign bits of DCT coefficients. We considered how the proposed methods can be applied to JPEG-encoded images and conducted extensive experiments to validate the performances of our proposed methods. The experimental results showed that the proposed methods worked well, especially when the number of unknown sign bits per DCT block is not too large. Compared with other existing methods, which are all based on simple error-concealment strategies, our proposed methods outperformed them with a substantial margin, both according to objective quality metrics (PSNR and SSIM) and also our subjective evaluation. Our work has a number of profound implications, e.g., more sign bits can be discarded to develop more efficient image compression methods, and image encryption methods based on sign bit encryption can be less secure than we previously understood.Comment: 13 pages, 8 figure

    3D Wavelet-Based Video Codec with Human Perceptual Model

    Get PDF
    This thesis explores the use of a human perceptual model in video compression, channel coding, error concealment and subjective image quality measurement. The perceptual distortion model just-noticeable-distortion (JND) is investigated. A video encoding/decoding scheme based on 3D wavelet decomposition and the human perceptual model is implemented. It provides a prior compression quality control which is distinct from the conventional video coding system. JND is applied in quantizer design to improve the subjective quality ofcompressed video. The 3D wavelet decomposition helps to remove spatial and temporal redundancy and provides scalability of video quality. In order to conceal the errors that may occur under bad wireless channel conditions, a slicing method and a joint source channel coding scenario that combines RCPC with CRC and uses the distortion information toallocate convolutional coding rates are proposed. A new subjective quality index based on JND is proposed and used to evaluate the overall performance at different signal to noise ratios (SNR) and at different compression ratios.Due to the wide use of arithmetic coding (AC) in data compression, we consider it as a readily available unit in the video codec system for broadcasting. A new scheme for conditional access (CA) sub-system is designed based on the cryptographic property of arithmetic coding. Itsperformance is analyzed along with its application in a multi-resolution video compression system. This scheme simplifies the conditional access sub-system and provides satisfactory system reliability
    corecore